
The Design and Implementation of Free Riding Multicast

by Andrey Ermolinskiy

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences, University
of California at Berkeley, in partial satisfaction of the requirements for the degree ofMaster of
Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Scott Shenker
Research Advisor

(Date)

* * * * * * *

Professor Ion Stoica
Second Reader

(Date)

Abstract

In this report, we revisit a much explored topic in networking - the search for a simple yet
fully general and efficient multicast design. The many yearsof research into multicast routing
have led to a generally pessimistic view that the complexityof multicast routing - and inter-
domain multicast in particular - can only be overcome by restricting the service model, as in
the case of single-source multicast. This report proposes anew approach to implementing IP
multicast that, we hope, might lead to a reevaluation of thiscommonly held view.

This report proposes Free Riding Multicast (FRM) - a new approach to network-level mul-
ticast routing and our primary contribution is a new protocol aimed at simplifying cross-domain
deployment of IP multicast. By replacing distributed tree computation with a multicast variant
of source routing, FRM sidesteps much of the complexity associated with traditional solutions,
while retaining efficiency and full generality of the service model.

2

Contents

1 Introduction 6

2 Related Work 8
2.1 Shortest-Path Multicast Delivery 8

2.1.1 Distance Vector Multicast Routing Protocol 8
2.1.2 Multicast Open Shortest Path First 9

2.2 Shared-Tree Multicast Delivery 9
2.2.1 Core-Based Trees . 10
2.2.2 Protocol-Independent Multicast 10

2.3 Single-Source Multicast 11
2.4 Overlay Multicast .11

3 FRM: Approach Overview 12

4 FRM: Design 14
4.1 Group Membership Maintenance .. . 15

4.1.1 New BGP Path Attributes . 16
4.2 Multicast Packet Forwarding 18

4.2.1 Forwarding at the Origin Border Router 18
4.2.2 Forwarding at Intermediate Routers 20

4.3 Summary of Design Tradeoffs .. 21
4.3.1 Advantages . 21
4.3.2 Challenges . 22

5 FRM: Evaluation 23
5.1 Router Storage Overhead .. 24

5.1.1 Group Membership State Requirements 24
5.1.2 Forwarding State Requirements 24

5.2 Bandwidth Overhead . 26
5.2.1 Overhead of Group Membership Update Traffic 26
5.2.2 Packet Forwarding Overhead .27

6 FRM: Implementation 35
6.1 Packet Processing .35

6.1.1 Source Domain Processing . 36
6.1.2 Transit Domain Processing .40
6.1.3 Packet Processing Overhead .40

6.2 Advertising Group Membership Updates 42
6.3 Deployment Experience .. 44

7 Conclusion 44

8 Acknowledgements 45

3

List of Figures

1 FRM forwarding in a sample AS-level topology. 13
2 Format of new BGP path attributes for communicating group membership. 17
3 Format of the FRM shim header. 19
4 Total group membership storage requirements at a border router. 25
5 Shim header cache size as a function of A (the number of groupswith

active sources in the local domain).. 26
6 The total number of packet transmissions (Npkt

FRM) for increasing group
sizes.. 27

7 CDF of Npkt
FRM (e) for FRM and unicast. 28

8 FRM bandwidth efficiency as a function of the target false positive rate
for different choices ofLTREE_BF . 30

9 Emergence of a routing loop as result of a false positive in theTREE_BF
encoding. 31

10 The distribution of bandwidth overhead across (a) edges inTS and (b)
edges inT/TS . 32

11 FRM bandwidth efficiency as a function of the target false positive rate
with and without edge pruning (LTREE_BF = 256). 33

12 The distribution of bandwidth overhead across edges inT/TS with and
without edge pruning (Ratefp = 0.01%, LTREE_BF = 256). 34

13 Software architecture of the FRM prototype. 36
14 Implementation of the main packet forwarding code path (non-essential

details are omitted). 37
15 Implementation of the source forwarding code path (non-essential details

are omitted). 38
16 Implementation of the source forwarding code path: cache hit (non-essential

details are omitted). 39
17 Implementation of the transit forwarding code path (non-essential details

are omitted). 41
18 FRM deployment set-up. 44

4

List of Tables

1 Summary of the state requirements and processing overhead in FRM. P
denotes the total number of destination prefixes in the BGP RIB and G
is the average number of groups per prefix.GS denotes the number of
groups with active senders in domainS and |T (GS)| is the average num-
ber of edges in dissemination trees for groups with senders in S. 23

2 Forwarding latency (in microseconds) atRs when the destination group is
in FRMHdrCache. 42

3 Forwarding latency (in milliseconds) for a 512-byte packetat Rs when the
destination group is not in FRMHdrCache. 42

4 Transit forwarding latency (in microseconds) for a 512-byte packet atRt. 43

5

1 Introduction

In 1990, Steve Deering proposed IP multicast [1] - an extension to the traditional IP unicast
service model for efficient multipoint communication. Thisservice model offers endhosts a
very simple abstraction: a host canjoin andleavea multicast groupG at any time and any host
cansendpackets to a groupG. As with unicast, the internals of the network are expected to
provide the foundational best-effort delivery service formulticast packets, atop which richer
application-level functionality may be implemented in theendhosts. The multicast service
model provides two key benefits:

1. The efficient use of network bandwidth for multipoint communication.

2. The indirection facility of a group address, which allowsfor network-level rendezvous
and service discovery.

Deering’s seminal work triggered an era of research on the implementation and applica-
tions of IP multicast, but despite many years of progress, the practical impact of this research in
terms of actual deployment in the Internet remains somewhatunclear. On the one hand, support
for multicast is built into virtually every IP router and every end-system network stack. The
multicast service is often deployed within enterprise networks, as well as within the boundaries
of a single ISP. However, we have seen very little cross-provider deployment of multicast in the
Internet and today, more than fifteen years after Deering’s proposal, the vision of a ubiquitous
multicast "dialtone" remains an elusive, if not altogetherabandoned, goal.

Theories abound for why this vision never materialized and broadly speaking, most of them
can be viewed as questioning the viability of IP multicast ontwo separate fronts:

1. Thepractical feasibilitygiven the apparent complexity of deploying and managing mul-
ticast at the network layer, as well as the unresolved technical challenges associated with
multicast routing (e.g., scaling of multicast forwarding state in routers).

2. Thedesirability of supporting the multicast function at the network layer. In particu-
lar, many have questioned whether the demand for multicast applications justifies the
complexity of its deployment and whether ISPs have meaningful economic incentives to
deploy IP multicast. Furthermore, network-level multicast requires routers to maintain
and manage per-group (and, for some protocols, per-source)state, which can be seen
as a violation of the end-to-end principle [2] - an architectural cornerstone of the early
Internet that argues for simplicity and statelessness in the network core.

In this report, we attempt to tackle the abovementioned issue of practical feasibility and
propose a simpler approach to implementing IP multicast that we call Free Riding Multicast
(FRM). In broad terms, FRM offers two key advantages over existingsolutions:

1. By leveraging knowledge of existing unicast routes, FRM virtually eliminates the need
for a distributed multicast route computation mechanism, thereby side-stepping much of
the complexity associated with traditional approaches to multicast routing.

2. A domain’s participation and use of multicast is signaledvia the same channel as in
the unicast case, namely the Border Gateway Protocol (BGP).This, in turn, offers net-

6

work administrators a familiar framework within which to tackle the management of a
multicast service, including the issues ofaccess controlandaccounting.

These advantages, however, come at a cost and the principal tradeoff in our approach is the
avoidance of distributed route computation at the expense of optimal efficiency. Unlike tradi-
tional approaches that tend to rely on distributed protocolmechanism, FRM tilts the burden of
multicast route construction to theinternalsof a router. As a consequence, FRM requires more
storage and algorithmic sophistication at routers and is somewhat less efficient in bandwidth
consumptions that traditional solutions. We believe, however, that given current technology
trends that can endow routers with substantial memory and processing resources on the one
hand and our continued difficulties taming wide-area routing algorithms on the other, this
tradeoff may be worth exploring.

Our contribution is a new approach to IP multicast routing that we hope would lower the
technical barriers to its deployment. While the primary focus of our work is on inter-domain
multicast, for which deployment challenges proved particularly acute, the basic FRM scheme
can be extended to the intra-domain scenario as well. And while we make no claims to un-
derstand the "market" for IP multicast and will not try to tackle the desirability aspect of the
discussion, it is interesting to note that many of the applications that originally motivated the
research on multicast have (finally) arrived.

One example is massively multiplayer online games (MMORPGs) with reports of annual
subscription growth in the range30 − 100% and up to 5 million active subscriptions in a
year [3]. In these games, a player’s actions must be propagated to other players in the "vir-
tual" vicinity and currently, game operators achieve this by deploying multiple servers, each
responsible for a certain region of the virtual world, that relay communication between play-
ers. Hence, forn players in a virtual region, the bandwidth requirements at the corresponding
server vary betweenO(n) to O(n2) depending on the extent to which latency constraints allow
multiple updates to be aggregated. [4]. In a simple scenario, game operators might use mul-
ticast to reduce server-side bandwidth consumption to betweenO(1) andO(n). In a slightly
more sophisticated scenario, players might multicast updates directly to other players in the
same region, thereby fully offloading data forwarding from servers.

Another promising example is the adoption of the IP-TV technology [5] with several
providers already in customer trials. Multimedia conferencing, RSS dissemination, software
updates, peer-to-peer file sharing, and grid computing are additional examples that could po-
tentially benefit from the presence of network-level multicast support.

The primary focus of this report is the design and evaluationof FRM and the remainder
of this document is structured as follows: We begin with a brief review of prior work on
multicast routing in Section 2. We discuss our high-level approach and present the detailed
design of FRM in Sections 3 and 4, respectively. Section 5 evaluates the performance and
router resource consumption and Section 6 presents our prototype implementation of FRM.
Finally, we conclude in Section 7.

7

2 Related Work

Multicast routing has been the topic of substantial research over the years and we have wit-
nessed the emergence of a large body of competing designs andapproaches. We begin our
survey of prior work by drawing a fundamental distinction between the techniques that dis-
seminate packets along traffic along a set of shortest-path trees (one for each sender) and those
that make use of a single tree shared across all senders. We also briefly touch upon the re-
stricted service model of single-source multicast and the overlay-based approach to multicast
routing.

2.1 Shortest-Path Multicast Delivery

In this scheme, a multicast packet from sourceS is delivered to each member of the group
along the shortest routing path fromS. This approach minimizes the end-to-end transmission
latency, as perceived by a receiver, but requires routers tomaintain per-source state. Hence,
this scheme can be seen as an attractive choice for supporting delay-sensitive and bandwidth-
intensive applications with a relatively small number of simultaneous senders; examples of
applications that fall into this category include multimedia conferencing, the various tools for
online collaboration, and the delivery of streaming media.

In his pioneering work [1], Steve Deering proposed a number of extensions to the existing
protocols for unicast routing with the goal of enabling shortest-path multicast delivery and this
work has laid the foundation for DVMRP and MOSPF.

2.1.1 Distance Vector Multicast Routing Protocol

DVMRP provides a multicast tree maintenance mechanism on top of a conventional distance
vector protocol for unicast routing. It uses a broadcast-and-prune scheme: a multicast packet
sent by a sourceS is initially forwarded toward all endhosts in the topology (regardless of
their group membership status) via a shortest-path broadcast tree rooted atS. Leaf routers
that receive unwanted packets send periodic non-membership reports to their parents on the
tree, which in turn aggregate and propagate these reports further toward the source and the
initial broadcast tree is eventually transformed into a multicast tree that properly reflects the
group membership status.; Packet forwarding in DVMRP makesuse of thereverse shortest
path technique, which works as follows: When a multicast packet originated by a sourceS
and addressed to groupG is received by a routerR, it forwards the packet further only if the
interface on which it arrived is the outgoing interface for the next hop on the shortest path
from R to S. The packet is forwarded on all interfaces for whichR serves as a parent in the
broadcast tree rooted atS, except those with active non-membership reports.

DVMRP provides efficient shortest-path delivery trees fromany potential source, but ex-
hibits poor scaling properties because it requires routersto maintain per-source state. Specif-
ically, for each potential sourceS in the topology, a router must maintain the set of its child
interfaces with respect toS. Furthermore, the tree construction mechanism is sender-driven
and penalizes non-members (i.e., routers off the dissemination path) by requiring them to par-
ticipate in the generation and propagation of non-membership messages.

8

2.1.2 Multicast Open Shortest Path First

The MOSPF protocol is a fairly incremental extension to OpenShortest Path First - a widely-
used unicast routing scheme from the link state family of protocols. In MOSPF, routers aug-
ment their link state advertisements (LSAs) with descriptions of groups that have members on
that link and each router maintains the global group membership state as part of its link state
database. When a new group member appears, its designated router notifies all other protocol
participants of the membership change by re-broadcasting the respective SLA. In this scheme,
forwarding a multicast packet originated by a sourceS requires computing the shortest path
tree fromS to the current set of receivers and forwarding copies of the packet toward the im-
mediate children on the tree. For efficiency reasons, the results of tree computation may be
cached and reused when processing subsequent packets addressed to the same group.

MOSPF constructs efficient dissemination trees, but is limited to networks that run link
state protocols. One must also note that a tree for a given group must be recomputed after
each membership change and the computational overhead grows with the number of links in
the topology.

In summary, while DVMRP and MOSPF both provide efficient shortest-path multicast de-
livery, path efficiency comes at a substantial cost and presents a scalability challenge for the
following reasons:

1. Setting up the forwarding state requires flooding certaininformation throughout the en-
tire topology. In DVMRP, establishing the non-membership state in intermediate routers
requires broadcasting the initial data packet. MOSPF restricts the dissemination of data
packets to the actual delivery path from the source to the setof receivers, but requires
periodic flooding of group membership updates.

2. The fast-path forwarding state at transit routers grows linearly with the number of active
multicast groups. Furthermore, since IP multicast group addresses are, in effect, flat
identifiers and do not easily lend themselves to topologicalaggregation, the forwarding
state requirements can also be expected to grow linearly with the number of senders.

For the above reasons, these protocols are typically used tosupport multicast within a
single domain and they are not well suited for large inter-domain environments characterized
by sparse membership and high rates of membership churn.

2.2 Shared-Tree Multicast Delivery

A number of shared-tree multicast protocols have been proposed to address the scaling lim-
itations of shortest-path delivery techniques in wide-area environments. In this approach, a
multicast group is associated with a small number of dissemination trees (often one) shared
among all senders. A sender unicasts its outgoing packets tothe root of the shared tree, whose
address is made well known, which in turn forwards the packettoward the set of group mem-
bers along the shortest path.

9

2.2.1 Core-Based Trees

The CBT protocol proposed by Ballardieet al. in [6] associates each multicast group with a
well-knowncorerouter that functions as the root of a single dissemination tree shared across all
senders. Senders unicast their outbound packets to the group’s core and when a new member
joins a groupG, its first-hop router sends aJoin(G) message along the reverse path to the
core. This message, in turn, allows intermediate routers onthe path between the core and the
new receiver to set up the necessary forwarding state. Specifically, the interface on which the
Join message arrived is added to the list of children for groupG and the outgoing interface
becomes the router’s parent for that group.

2.2.2 Protocol-Independent Multicast

PIM-SM [7] is another scheme for supporting multicast in wide-area environments character-
ized by sparse group membership. While similar in spirit to CBT, PIM-SM offers additional
flexibility by allowing leaf routers to switch between shortest-path and shared-tree delivery on
per-source basis and choose the most appropriate delivery method based on current network
conditions and traffic characteristics. Each multicast group G is associated with a well-known
rendezvous point(RPG) router that plays a dual role:

1. It serves as the root of the group’s shared tree.

2. For shortest-path delivery, it serves as a point of contact between the group’s senders and
receivers, allowing them to discover each other and establish the requisite forwarding
state in intermediate routers without a network-wide broadcast.

Shared-tree multicast delivery schemes such as CBT and PIM-SM avoid the blowup of
router state inherent to shortest-path protocols and thus offer a substantial improvement in scal-
ability, but forfeit path optimality. For this reason, multicast architectures based on the shared
tree approach are well suited for delay-insensitive applications that must support a large num-
ber of simultaneous senders and examples might include the various mechanisms for service
discovery and network-level rendezvous.

The above two protocols have another desirable property: receiver-driven tree formation.
These protocols succeed in constraining the flow of their control and data traffic to the distrib-
ution tree, which makes them an appealing choice for implementing inter-domain multicast1.

Unfortunately, shared-tree protocols give rise to a numberof non-trivial issues pertaining
to the placement and ownership of RPs when deployed in wide-area environments that span
multiple administrative domains. The RP can be seen as a single point of failure, whose avail-
ability in effect determines the availability of the respective multicast group and historically,
ISPs proved reluctant to depend on RPs operated by other providers. In addition, the use of
shared-tree mechanisms leads to reduced service availability in the face of network partitions:
a sender partitioned away from the rendezvous point loses its ability to communicate with the
entire group. Conversely, a group member that lacks bidirectional connectivity with the RP

1The caveat is that shared-tree protocols typically requireflooding the mappings between group addresses and the
corresponding RPs via some out-of-band mechanism

10

cannot receive any of the data sent to the group by any sourceS even if this member has a
valid communication path toS.

2.3 Single-Source Multicast

It has been suggested that many of the target applications for IP multicast require delivery from
only a single, typically well-known source, as is clearly the case with various streaming media
delivery services, and that much of the complexity associated with traditional multicast routing
can be eliminated by restricting the service model to allow only a single endhost to act as a
sender for a given group.

The IP Multicast Channels architecture and the associated EXPRESS protocol proposed
by Holbrooket al. in [8] exemplify this approach. In their scheme, endhosts subscribe to mul-
ticastchannelsthat are identified by the source address (SrcAddr) and the channel number
(ChanNum). To join an EXPRESS channel, an endhost sends aJoin(SrcAddr,ChanNum)
request directly to the source, which causes intermediate routers on the path to establish for-
warding state. Since the sender’s address is assumed to be well-known, this mechanism does
not require indirection via the use of a rendezvous point, thereby eliminating the need for
an additional RP address discovery mechanism, as well as theabovementioned non-technical
issues pertaining to their placement and ownership.

Although only one source may transmit to a given channel, multi-source applications can
be accommodated in EXPRESS either by defining multiple channels (one for each source) or
via the use of a Session Relay (SR) - a designated node that consolidates traffic from multiple
senders and retransmits it on a single well-known channel, in effect acting as the root of a
single tree shared across all senders. While the EXPRESS protocol is similar to PIM-SM
in providing the ability to dynamically adjust between shortest-path and shared-tree delivery,
the key point of distinction is that Session Relays in EXPRESS are application-level entities
and control over the placement SRs and the policy for switching between the shared and the
shortest-path delivery methods is delegated to the application and/or its users.

2.4 Overlay Multicast

While advocates of IP multicast have argued that the performance benefits of supporting mul-
ticast at the network layer justify the burdens of increasedprotocol complexity and router
resource requirements, achieving widespread deployment of IP Multicast across the Internet
has proven to be an increasingly uphill battle, which has ledothers to adopt precisely the op-
posite view and seek alternative approaches. In particular, there has been considerable interest
in peer-to-peer overlay-based schemes, where participating endhosts organize themselves into
a overlay mesh and cooperate on providing the multicast routing functionality.

In the Narada protocol for end-system multicast proposed byChu et al. in [9], members
of a group arrange themselves into a self-organizing overlay topology and neighboring nodes
periodically exchange their lists of known members, so thatevery node eventually learns about
all other members of the group. The overlay topology is maintained using a dynamic mech-
anism that allows any node to adjust its neighbor set by adding and droppings links with the

11

goal of improving the overall efficiency of the overlay with respect to latency and bandwidth.
A path vector protocol deployed on top of the overlay allows each potential source to discover
a routing path to every group member and construct a multicast delivery tree.

The packet forwarding mechanism in Narada follows the conventional reverse path for-
warding technique: A memberM that receives a multicast packet via a neighborN forwards
the packet iffN is the next hop on the shortest path fromM to the packet’s source.

Unlike network-level multicast, applications that utilize an overlay-based scheme are easily
deployable in the current Internet, as they do not require ubiquitous router support for multicast
routing, but this useful property comes at the expense of efficiency. An overlay dissemination
tree, in which only endhosts can serve as replication points, is nearly always less efficient
than what could be achieved with network-level multicast support, as some of the links will
inevitably see redundant packet transmissions. Absence ofrouter support also means that
endhosts are responsible for the maintenance of the global group membership state, which
presents a scalability challenge. For this reason, endhost-based systems such as Narada are
limited to supporting only small to medium-sized groups.

To summarize, while both network-level and overlay solutions offer the benefits of mul-
ticast, namely efficient group communication and address indirection, they come with highly
different tradeoffs, offering efficiency on the one hand andease of deployment on the other.

Having provided a brief overview of prior research on multicast routing to help place our
work in context, we now proceed to the discussion of Free Riding Multicast. In the following
two sections, we describe our high-level approach, summarize the key design features that
differentiate FRM from earlier work, and examine the tradeoffs in our design.

3 FRM: Approach Overview

In very broad terms, multicast packet delivery requires:

1. A group membership discovery mechanism: given a destination groupG, identify the set
of current members inG.

2. A route discovery mechanism: Given a group memberM , identify a valid routing path
from the packet source toM .

While many of the existing solutions combine these two components into a single mono-
lithic mechanism, we take a slightly different approach by explicitly separating group mem-
bership maintenance from route discovery. This separationis crucial to our design and offers
the following advantage: once group members are known, any source can locally compute the
entire dissemination tree for an outgoing multicast packetfrom the union of its unicast routes
to each member of the group. As we demonstrate below, centralizing the tree computation
procedure allows us to sidestep many of the complexities associated with the traditional ap-
proaches to multicast routing, many of which rely on a distributed protocol for the construction
and maintenance of dissemination trees.

At a very high level, the FRM scheme operates as follows: A domain’s border router
augments its BGP prefix advertisements with an encoding of the multicast group addresses

12

AS 1 R1

AS 2

R2

AS 3

R3

AS 7R7

AS 6R6

AS 4

R4

AS 5R5

Source
domain

Members
of G

a.b.*.*

c.d.*.*

e.f.*.*

g.h.i.*

(a) A sample AS-level topology.AS1 originates a packet
destined for groupG with 3 member domains (AS4,
AS6, andAS7).

G1 3 7g.h.i.*

G1 3 6e.f.*.*

None1 2 5c.d.*.*

G1 2 4a.b.*.*

GroupsAS_PATHDest. Prefix

1

2 3

4 76

Subtree2 Subtree3

R1AS 1

(b) Content of the BGP Forwarding Information Base
(FIB) atAS1 and the resulting dissemination tree.

Figure 1:FRM forwarding in a sample AS-level topology.

with active members in its domain2 (we discuss the specifics of this encoding in Section 4)
and disseminates this information via the standard BGP route advertisement mechanism. As a
result, every border router learns which multicast groups are present in each destination prefix
and this information is maintained as part of per-prefix state in the BGP Routing Information
Base (RIB).

To forward a multicast packet addresed toG, the source domain’s border router (denoted
Rs) scans its BGP RIB to identify the set of prefixes with membersin G and computes the
dissemination tree from the union of the AS-level unicast paths (as specified by the value
of the AS-PATHattribute) to all member domains. Having constructed the delivery tree,Rs

forwards a single copy of the packet to each immediate child domain on this tree along with
an encoding of the subtree rooted at that child. Upon receiptof a packet fromRs, the child
domain’s border router examines the encoding supplied in the packet and, in turn, forwards a
copy of the packet toward its children on the tree, and so forth.

We illustrate this process in Figure 1(a). A packet originated by a host inAS 1and destined
for a multicast groupG arrives at the domain’s border router (R1). This router examines its
BGP RIB(shown in Figure 1(b) on the left) and determines thatprefixesa.b.*.*, e.f.*.*, and
g.h.i.* (which correspond to domainsAS 4, AS 6, andAS 7, respectively) have active members
in this group. Using this information,R1 computes the dissemination tree from the union of
the AS-level unicast paths from the local domain (AS 1) to each of the member domains. The
resulting tree is shown in Figure 1(b) on the right. Finally,R1 transmits one copy of the packet
to R2 along with an encoding ofSubtree1 and, accordingly, another copy toR3 along with an
encoding ofSubtree3.

2In the remainder of this report with use the termsdomainandautonomous system (AS)interchangeably.

13

While our approach can be viewed as extending MOSPF to the inter-domain arena, it is
important to note that unlike link-state protocols, BGP does not provide its participants with
a global view of the network topology. A domain’s border can leverage its unicast routes
obtained from BGP to compute a valid multicast delivery pathfrom itself to a given set of
receivers. However, a BGP speaker has no easy way of determining (in the general case)
whether its domain lies on the path from another source to a given receiver, which complicates
multicast forwarding at transit routers. Returning to the example of Figure 1(a),R2 andR3

may both have BGP entries for the destination prefixe.f.*.* and can therefore infer the presence
of group members in the respective domain (AS 6). However, whenR2 receives a packet from
R1, it has no easy way of knowing not to forward the packet towardAS 6because the local
BGP information atR2 does not reveal that its domain isnot on the unicast path used byAS
1 to reachAS 6. In fact, the choice to route via1 → 2 → 6 rather than1 → 3 → 6 may
have been the result of a local policy decision atAS 1and BGP does not currently provide a
facility that would allow a participating domain to explicitly externalize its routing policies to
its peers.

FRM addresses this problem by requiring the source border router to augment each out-
going packet with an encoding of the dissemination tree and the forwarding decision logic
at intermediate routers makes use of this additional information, but this is by no means the
only feasible design choice. As an alternate option, one could envision employing a limited
form of DVMRP-style broadcast-and-prune, although this approach would raise concerns over
scalability and increased bandwidth overhead for non-members.

At a slightly more speculative level, the per-packet overhead associated with the tree en-
coding can be altogether eliminated by modifying the underlying unicast routing infrastructure
and replacing BGP with a policy-compliant link-state protocol. While this approach would
face a daunting barrier to deployment in the current Internet, it might be interesting to explore
this design in the context of a clean-slate perspective on the Internet architecture - a research
area that is rapidly gaining momentum thanks to initiativessuch as the NewArch project [10],
NSF’s GENI [11], FIND [12], and [13]. As an intermediate stepin this direction, we pro-
pose an incremental extension to BGP aimed at providing routers with a broader view of the
global topology, which in turn allows us to reduce the amountof per-packet bandwidth over-
head incurred by the FRM forwarding scheme. We discuss and evaluate this extension in
Section 5.2.2.

We now proceed to a detailed description of the design, followed by a summary of the core
tradeoffs.

4 FRM: Design

The high-level design of FRM can be separated into two components:group membership dis-
coveryand thepacket forwarding mechanismand we now present our solutions for each along
with a qualitative examination of router resource requirements, including the storage overhead
due to the global group membership state and the computational cost of packet processing.

14

4.1 Group Membership Maintenance

As mentioned in the previous section, our design attempts toleverage existing unicast routes
for multicast packet delivery and toward this end, we extendBGP to include per-prefix group
membership information.

We assume that a domain’s border router discovers which group are present (i.e., have
active members) in its local domain through interaction with the intra-domain multicast rout-
ing protocol. For instance, if PIM-SM is used for intra-domain multicast delivery, a group’s
internal Rendezvous Point could be configured to notify the border router of domain-wide
membership changes (when the first member joins or the last member leaves). Upon receiving
a packet addressed to a group with members in the local domain, the border router could tunnel
the packet to the respective RP, which would in turn initiatelocal dissemination and vice versa.

A domain’s BGP speaker augments its route advertisement with an encoding of the group
addresses with active members in the advertised prefix. While one can consider several distinct
techniques for encoding this membership information, simple enumeration would leave limited
opportunities for scaling to large numbers of groups. Instead, we use an alternate method
that achieves space efficiency by encoding the list of locally active groups into a bloom filter
(denotedGRP_BF) - a probabilistic data structure that compresses a set of elements into
a bitfield of predetermined length [14]. The use of bloom filters introduces the possibility
of false positives, meaning that a domain may on occasion receive traffic for an unwanted
multicast group. It is important to note, however, that our scheme is not susceptible to false
negatives and therefore never results in service being denied to legitimate group members.

To deal with unwanted traffic resulting from false positives, the receiving domain’s border
routerR can simply drop all such traffic or recode its advertisement into multiple bloom filters
such that the offending false positive is eliminated. Yet another option would be to let the
receiver inform the upstream domainU (i.e., the previous hop on the dissemination path) by
the means of a non-membership report similar to DVMRP. In response,U could install an
explicit filter rule to cease forwarding the offending group’s traffic toR and we assume the use
of this method in the remainder of the report.

Clearly, the length of a group bloom filter represents a tradeoff between the router memory
requirements due toGRP_BF state on the one hand and the amount of unsolicited traffic a
domain may receive (and hence the number of filter entries needed to handle it) on the other.
In fact, knowing the number of filter entries a domain is permitted to install at its upstream
provider(s) provides a way to reason about the choice of the filter length (denotedLgrp).

If we assume that each false positive results in a filter beinginstalled in the upstream
provider’s domain, we can calculate the maximum false positive rate that a receiver can tolerate
from the number of available filter entries (f), the number of group addresses to be encoded
(G), and the total size of the multicast address space (A):

Ratefp = Min(1,
f

A − G
).

The above false positive rate can then be used to compute the appropriate filter sizeLgrp.

15

We have:

Ratefp =

(

1 −

(

1 −
1

Lgrp

)HG
)H

≈
(

1 − e−HG/Lgrp

)H
,

whereH is the number of hash functions used by the bloom filter. Solving forLgrp yields:

Lgrp =
−HG

ln(1 − (Ratefp)1/H)
.

As an example, if we assume the standard IPv4 multicast address space (224.0.0.0 - 240.0.0.0)
and 100 upstream filters, encoding 100,000 groups would require maintaining the false posi-
tive rate below6 ·10−7. Using the optimal number of hash functions (H = 21), we can encode
these groups into a bloom filter of length 2,982,200 bits or approximately 364KB.

To simplify manipulation (compression, expansion, and aggregation) we requireLgrp to be
a power of two. Note that if a provider domain employs prefix aggregation, the aggregate group
filter can be easily computed as the bitwise OR of the corresponding customerGRP_BFs.

It is also important to note that unlike conventional BGP route advertisements, processing
an FRM membership update imposes only a modest processing cost and does not require
invoking the BGP decision process. Upon receipt of aGRP_BF update, a router must simply
apply the update to the current copy of the originating domain’s group bloom filter in the
BGP RIB and, in certain rare cases (which we discuss in Section 4.2), update the multicast
forwarding tables on line cards.

4.1.1 New BGP Path Attributes

As we discussed above, our scheme requires border routers topiggyback the local membership
information on their BGP prefix advertisements and toward this end, we introduce three new
BGP path attributes:

FRM_GRP_BFVAL (Figure 2(a)) - An optional transitive path attribute of variable length
used for the initial transfer of the group membership state at the start of a peering session
between a pair of FRM-speaking routers. The attribute valueconsists of an 8-byte header
followed by a variable-length bitfield (BFData) carrying the actual content of the group
bloom filter in its entirety or a segment thereof. The header specifies the total length of
the GRP_BF encoding in bytes (BFLength) and the offset of the supplied segment
(SegmOffset).

The need for segmentation and reassembly in our current design stems from the 4-KB
limit on the maximum size of a BGP UPDATE message imposed by the current BGP
protocol specification [15], which complicates the task of transmitting large membership
encodings that exceed this size limit. While the obvious workaround would be to in-
crease the maximum message length, this would require modifying the message header
format, and hence breaking compatibility with legacy routers. Instead, we chose to work
within the constraints of the current BGP specification and provided a mechanism that
allows FRM-enabled border routers to transfer largeGRP_BF encodings in a piece-
wise manner via multiple UPDATE messages. Fortunately, BGPis designed to operate

16

FRM_GRP_BFVAL (8) 1 1/0

O T P E

Attribute flags (1 byte) Attribute type code (1 byte)

FRM_GRP_BFVAL attribute type

BFLength

FRM_GRP_BFVAL attribute value

SegmOffset

4 bytes

4 bytes

 Var. length

O - Optional

T - Transitive

P - Partial
 E - Extended length

 0 0 0 0

BFData

1 0

(a) Format of theFRM_GRP_BFV AL path attribute.

FRM_GRP_UPDATE (9) 1 1/0

O T P E

Attribute flags (1 byte) Attribute type code (1 byte)

FRM_GRP_UPDATE attribute type

FRM_GRP_UPDATE attribute value

 Var. length

 0 0 0 0

UpdateList

1 0

(b) Format of theFRM_GRP_UPDATE path at-
tribute.

FRM_GRP_PARAM(10) 1

O T P E

Attribute flags (1 byte) Attribute type code (1 byte)

FRM_GRP_PARAM attribute type

FRM_GRP_PARAM attribute value (2 bytes)

 0 0 0 0 1 0 0

NumBFHash

(c) Format of theFRM_GRP_PARAM path attribute.

Figure 2:Format of new BGP path attributes for communicating group membership.

on top a reliable transport protocol, which simplifies the handling of fragmentation and
reassembly at the FRM level and eliminates the need for explicit mechanisms for dealing
with segment loss, duplication, and reordering.

FRM_GRP_UPDATE (Figure 2(b)) - An optional transitive path attribute of variable length
used to communicate incremental updates to the currentGRP_BF state, allowing a
domain to signal changes to its membership status without retransmitting the group
bloom filter in its entirety. The attribute value contains a single variable-length field
UpdateList holding an array of bit positions, each of lengthlog2(Lgrp) bits, whose
corresponding values in the group bloom filter need to be flipped. If necessary, the
UpdateList field is padded with trailing 0-bits to an integer number of bytes.

FRM_GRP_PARAM (Figure 2(c)) - An optional transitive path attribute of fixed length used
to communicate the parameters of theGRP_BF encoding. At present, its value con-
tains only a single field specifying the number of hash function used in the encoding
(NumBFHash). We assume that all implementation of FRM will share a single glob-
ally agreed-upon and uniformly ordered set of hash functions.

17

4.2 Multicast Packet Forwarding

We now turn to discussing the packet forwarding process. In the FRM scheme, the border
router in the packet’s source domain plays a special role andhandles outgoing packets in a
manner that differs from processing at transit routers and we discuss each in turn.

4.2.1 Forwarding at the Origin Border Router

A multicast packet sent by sourceS to a groupG is delivered by the means of the intra-domain
multicast protocol to the border router in the source’s domain (denotedRs). This router scans
its BGP RIB and performs a lookup in eachGRP_BF entry to identify the set of destination
prefixes with active members inG. Using this information,Rs then constructs the domain-
level multicast dissemination treeT (G) from the union of the individual unicast paths to each
member prefix (as given by the value of theAS_PATH attribute).

The source domain’s immediate children on the tree constitute the set of next hop domains
for Rs. However, as we described in Section 3, the source border router cannot simply forward
the packet to each such domain, since the target may not necessarily have all the information
it would need to make a correct a forwarding decision and propagate the packet further along
the tree. Specifically, a transit routerRt may not know whether it lies on the unicast path used
by Rs to reach a particular member prefix.

FRM addresses this issue by requiringRs to communicate the relevant fragments ofT (G)
to intermediate routers on the dissemination path. Specifically, for each child domainC, the
source border router constructs a space-efficient encodingof the edges of the dissemination
subtree rooted atC, inserts this encoding into the outgoing packet in the form of a "shim" layer
above the IP header, and forwards the resulting packet toC. In the example of Figure 1(a),R1

would encode the edge(2 → 4) in its packets toR2 and{(3 → 6), (3 → 7)} in those toR3.
For scalability reasons, we encode the tree into the shim header using a bloom filter (de-

notedTREE_BF) but unlike group membership encodings discussed in the previous sec-
tion, we require the shim header to be of fixed and well-known length so as to be amenable
to fast hardware-assisted processing in transit routers. Our reliance on bloom filters makes
the encoding scheme susceptible to false positives which, in this particular context, manifest
themselves as packet transmissions along inter-domain edges that do not belong to the original
delivery tree (e.g., a domainA may forward a copy of the packet to its neighborB even if
(A → B) /∈ T (G).

Figure 3 illustrates the format of the FRM shim header. It holds a bloom filter encoding of
the subtree, preceded by a 32-bit control structure that carries additional information about the
encoding. Specifically, the first 4 bits of the header hold thenumber of hash functions used to
generate the encoding, followed by a 4-bit field denoting thelength of the encoding in 32-bit
words. The next 16 bits carry a checksum, which is computed byconsidering the entire header
(including the control structure) as a sequence of 16-bit words. The last 8 bits of the control
structure are currently unused and are reserved for future protocol extensions.

The choice of the shim header length represents another important tradeoff in our design,
namely, a tradeoff between the number of unsolicited packettransmission resulting from false
positives in theTREE_BF and the constant per-packet bandwidth penalty due to the shim

18

4 7 0

NumHash Length

Checksum (high-order byte)

Checksum (low-order byte)

Reserved

Bloom filter encoding of
the subtree

Figure 3:Format of the FRM shim header.

header. An insufficiently large header size can result in high false positive rates for large
groups, whereas choosing a large enough value to accommodate even the largest groups would
result in a needless waste of bandwidth due to the shim header. Our design tries to attain a com-
promise between these competing concerns: we pick a fixedTREE_BF size ofLTREE_BF

bits and a target false positive rateRatefp and computeE - the number of edges that can be
encoded intoLTREE_BF bits while maintaining the rate of false positives below thechosen
threshold. We have:

Ratefp = 2− ln(2)
LTREE_BF

E

or, equivalently:

E = LTREE_BF ·
− ln(2)2

ln(Ratefp)
.

The optimal number of bloom filter hash functionsH that yields the above false positive
rate is given by:

H = ln(2) ·
LTREE_BF

E
.

As an example, if we assume a1% target false positive rate, 83 AS-level edges can be
encoded into a single 100-byte shim header and achieving theoptimal encoding efficiency
would require 7 hash functions.

Having determined the number of edges that can be transferred in a single shim header, we
use a standard bin-packing algorithm to decompose the subtree rooted at a childC of Rs into
groups of smaller subtrees, ensuring that the number of edges in each group does not exceed
E. We then encode each such group into a single shim header and forward it towardC along
with a separate copy of the packet. Note that as a result, certain links on the dissemination

19

tree may see multiple redundant copies of a single multicasttransmission and this unfortunate
consequence stems from our decision to maintain a fixed-sizeshim header.

Let us now briefly consider the computational cost of the centralized tree construction proce-
dure invoked at the source border router. This cost grows linearly with the number of prefixes
in the router’s RIB and the average AS path length. Although clearly expensive, the crucial
factor that renders our approach feasible is that results ofthe initial computation can be cached
and reused to process subsequent packets addressed to the same group and hence, the large cost
is incurred only on the first packet sent to each group. We alsonote that the initial operation
involving the scan of the BGP RIB is highly amenable to parallelization and can be handled
efficiently on appropriately provisioned hardware.

The cached forwarding entry for a given destination groupG consists of ak-element array

{(ASNum1, TREE_BF1), (ASNum2, TREE_BF2), ..., (ASNumk , TREE_BFk)},

wherek is the number of top-level children inT (G) and each element holds the forwarding
information for the corresponding child, namely: its AS number and a bloom filter encoding
of the respective subtree. The cache of forwarding entries is indexed by the destination group
address and any of the well-known techniques for efficient exact-match lookups can be em-
ployed to retrieve the forwarding entry for a a given destination address. For example, CAMs
and direct memory data structures offer constant-time exact-match lookups, while more com-
pact data structures achieve lookups in logarithmic time [16, 17].

We note that our scheme requiresRs to maintain per-group forwarding state that grows
linearly with the size of a single forwarding entry (which, in turn, depends on the size of
the treeT (G)), as well as the number of groups with active local sources. We consider this
scaling reasonable because we expect that in any realistic scenario, only a small fraction of
groups will have active sources in the local domain and the intra-domain multicast protocol
is likely to exhibit similar scaling properties. We evaluate the memory requirements for the
forwarding cache atRs in detail in Section 5.1.2 and our results suggest that the cached state
could be mostly accommodated in line card memory. Consequently, we expect that once the
delivery tree has been computed,Rs will process its outgoing packets entirely via the fast-
path forwarding logic. On the other hand, if line card memorybuffers cannot accommodate
the entire cache, one might consider caching only the forwarding entries for groups with high
volume of traffic and leave the forwarding of low data volume groups to the route processor.

4.2.2 Forwarding at Intermediate Routers

As we saw in the previous section, the packet forwarding operation at the source border router
incurs some nontrivial storage and computational costs. The payoff for complexity of forward-
ing at the source is highly scalable, simple, and efficient forwarding at intermediate routers.
To forward a multicast packet, a border routerRt in a transit domainT simply inspects the
TREE_BF encoding supplied in the packet’s shim header and checks which of its AS neigh-
bor edges are on the encoded subtree. Specifically, for each neighbor domainN , Rt performs

20

a bloom filter lookup inTREE_BF and forwards a copy of the packet toward the next hop
for domainN if the edge(T → N) is present in the encoding.

To ensure efficient processing atRt, we store neighbor edges in their encoded represen-
tation. That is, each neighbor edge is encoded into (and stored as) a separate bloom filter
and standard filter matching techniques can be used to implement the forwarding lookup op-
eration. Specifically, for each neighbor edge(T → N), Rt must simply check whether the
corresponding bits are set in the packet’sTREE_BF . There are a variety of mechanisms for
implementing filter matching and one simple and efficient option would be to use TCAM with
the bloom filter for each neighbor edge stored in one TCAM row and all zero bits set to the
"don’t care" value [18]. This method would allow all neighbor edges to be matched in paral-
lel with a single TCAM access. Alternatively, edge encodings can be stored in RAM, which
would allow logarithmic-time matching.

Finally, we note that the content of the shim header requiresno updating atRt and remains
unmodified along the entire path between the source domain and the set of receivers.

4.3 Summary of Design Tradeoffs

Having presented our solutions to the two core aspects of themulticast routing problem,
namely, group membership discovery and packet forwarding,we are now ready to summarize
the principal tradeoffs in our design. Our primary goal withFRM was to provide a "leaner"
multicast solution that seeks to minimize the amount of distributed protocol mechanism at the
expense of optimal efficiency. As we discuss below, this offers both advantages and challenges.

4.3.1 Advantages

Sparseness in protocol mechanism.In terms of protocol complexity, the basic FRM
design requires:

1. Extending the inter-domain unicast routing protocol (BGP) to carry group membership
information as part of route announcements.

2. Providing a mechanism that allows a transit domain to filter multicast traffic (on a per-
group and per-link basis) upon request from a downstream customer domain.

Scalable forwarding at transit routers. As we saw in Section 4.2.2, our source-encoded
forwarding scheme enables simple and efficient packet processing at intermediate routers.Rt’s
"forwarding" state is essentially a list of its neighbor AS edge encodings and hence, the num-
ber of forwarding entries depends only on the domain’s AS degree. Measurement studies of
the Internet topology report per-domain AS degrees that range from 1 to under 10,000 and
follow a power-law distribution [19]. We can thus expect thenumber of forwarding entries
at most transit routers to be low, possibly several orders ofmagnitude lower than the size of
the multicast group address space, and thus easily accommodated on line cards. Crucially, the
amount of transit forwarding state doesnot depend on the number of active groups and the
number of sources in a group. Furthermore, since the forwarding state atRt depends only on

21

its (largely static) set of AS neighbors, our design does notrequire a distributed protocol to
construct and maintain this state.

The simplicity of transit forwarding and the efficient scaling of forwarding state atRt are
the key distinguishing features of our design that differentiate FRM from many of the existing
approaches. To the best of our knowledge, FRM is the only multicast routing scheme that
offers shortest-path delivery without requiring intermediate path elements to maintain per-
source state. However, this attractive property comes at the cost of some additional bandwidth,
memory, and computational overhead in the source domain.

Centralized route computation. In FRM, the dissemination tree is constructed in its
entirety by the border router in the source domain using the knowledge of existing unicast
routes. This not only eliminates the need for a separate multicast route discovery mechanism,
but also protects us from the effects of certain routing anomalies, such as those reported in
[20, 21].

General service model. In contrast to the Multicast Channels framework, FRM supports
the general multi-source service model of IP Multicast and achieves efficient packet delivery
with source-rooted trees.

Ease of configuration and management. Unlike shared-tree schemes such as PIM-SM
and CBT, FRM avoids the contentious issues concerning the selection and placement of RPs.
Furthermore, since our design requires only a few incremental extensions to BGP, it does not
impose the burden of configuring a new inter-domain protocoland instead offers management
within the familiar BGP framework.

Accountability and ISP control. Lack of accountability has been frequently cited as one
of the primary impediments to the adoption of IP multicast inthe wide area. In FRM, the border
router in the source domain has full knowledge of (and control over) the set of destinations
included in the dissemination tree. This allows ISPs to infer the degree of traffic "amplification"
due to a multicast transmission originated by a customer and, in turn, provides a basis for
a meaningful charging model. In addition, since group membership is explicitly advertised
through BGP, an ISP also has complete control over its customers’ group subscription status:
blocking access to an undesired group is simply a matter of excluding it from theGRP_BF
encoding.

Finally, we note that unlike the IP source routing paradigm,our source-encoded forwarding
scheme selects paths compliant with the local policy choices of intermediate ISPs.

4.3.2 Challenges

State requirements. FRM incurs the overhead of advertising and maintaining group mem-
bership state. While true for all multicast protocols, our design disseminates membership infor-
mation more widely than most traditional schemes and hence incurs greater overhead. Table 1
summarizes the state requirements and processing costs in FRM and we note that while our

22

State Scaling Location Lookup

Membership state atRs O(P · G) Route processor Linear scan
Cached forwarding entries atRs O(GS · |T (GS)|) Line card Exact match
Neighbor link encodings atRt AS degree Line card Filter match

Table 1:Summary of the state requirements and processing overhead in FRM. P denotes the
total number of destination prefixes in the BGP RIB andG is the average number of groups
per prefix. GS denotes the number of groups with active senders in domainS and |T (GS)| is
the average number of edges in dissemination trees for groups with senders inS.

design tilts the burden of forwarding state and complexity onto senders’ access domains, this
is not an entirely displeasing arrangement, since the bandwidth-conserving benefit of multi-
casting is greatest at the sender.

Suboptimal bandwidth utilization. FRM’s reliance on what is effectively a form of
multicast source routing incurs additional bandwidth costs:

1. The FRM shim header incurs a fixed per-packet transmissionoverhead.

2. False positives in theTREE_BF encoding may on occasion trigger unnecessary packet
transmissions to non-participants.

3. The use of a constant-size encoding necessitates duplicate packets transmissions (on a
subset of links) for groups too large to be encoded into a single TREE_BF .

Unconventional packet forwarding techniques. Traditional packet forwarding mech-
anisms require a longest prefix lookup on the destination address to identify the next hop along
which to send the packet. By contrast, obtaining the set of next hops in FRM requires a full
scan of the BGP table at the origin border router and a series of bloom filter lookup at interme-
diate nodes. Our design faces the challenge of achieving this in a manner that is both scalable
and amenable to high-speed processing in hardware. We note,however, that the (relatively
high) cost of tree computation is incurred only by the sourceborder router and, even there,
only once for each group with active sources in its domain.

In the following section, we address these concerns by presenting a detailed evaluation of
our design.

5 FRM: Evaluation

In this section, we estimate the storage and bandwidth overhead incurred by FRM’s group
membership and packet forwarding mechanisms using trace-driven simulation. Below, we
present only key results intended to demonstrate the practical feasibility of our scheme under
likely usage scenarios, while a more detailed exploration of the parameter space can be found
in an extended technical report [22].

23

The following simulation setup is used throughout this section: We associate a single
multicast user with each routable unicast address and a domain represented by a prefixp =
x.x.x.x/L can thus be assumed to haveU(p) = 232−L users. Each user, in turn, selects and
joins k distinct multicast groups from the address space of sizeA according to some group
popularity distribution. Unless otherwise noted, we modelgroup popularity via a zipfian dis-
tribution [23] and pessimistically assume no topological locality in group membership. For
inter-AS connectivity data, we use Subramanianet al.’s snapshots of BGP routing tables from
Oct’04 and their AS-level topologies annotated with inferred inter-AS peering relationships
[24].

We begin by quantifying the router storage requirements dueto theGRP_BF state and
the cached forwarding entries and then proceed to an examination of bandwidth overhead.

5.1 Router Storage Overhead

5.1.1 Group Membership State Requirements

As we explained in the preceding section, our scheme requires border routers to maintain a
group membership bloom filter for each destination prefix in the BGP table. For each prefixp
of lengthL(p), we estimate the expected size of its membership bloom filterGRP_BFp. This
is done by first computing the expected number of distinct groupsG(p) advertised byp given
thatU(p) users each selectk groups fromA according to the chosen popularity distribution.
Using the equations from Section 4.1, when then determine the minimumGRP_BFp length
needed to encodeG(p) items for a target false positive rate off/(A − G(p)) (recall thatf is
the permitted number of filters per prefix). Finally, we compute the aggregate storage cost due
to GRP_BF state at a border router by summing over all prefix entries in the BGP table.

Figure 4 illustrates the total group membership storage requirements at a BGP router as
a function of the address space sizeA for f = 10 andk = 1, 10, and100 groups per user.
We see from the figure thatGRP_BF state for 1 million simultaneously active groups and 10
groups per user requires approximately 3GB of router memory- an amount found today even
on users’ endhost machines. Overall, while the memory overhead due to group membership
state is nontrivial in our scheme, it is certainly manageable given today’s storage technology
and costs. Furthermore, we expect that the current trend in memory costs should allow FRM to
accommodate the relatively slower growth in BGP table size and incur only a modest increase
to overall router costs.

5.1.2 Forwarding State Requirements

Forwarding State at a Transit Router. Recall from Section 4.2.2 that the forwarding
state at a transit routerRt consists of bloom filter encodings of its AS neighbor edges and the
number of such encodings is given by the AS degree ofRt’s domain. Given the power-law
AS degree distribution in the Internet topology [19], we canexpect the number of forwarding
entries to be remarkably small for the vast majority of domains under present conditions. More
specifically, it has been observed that 90% of all domains in the Internet currently have fewer

24

Figure 4:Total group membership storage requirements at a border router.

than 10 AS neighbor edges and 99% have fewer than 100. The domain with the highest AS
degree has no more than 2,400 edges.

We can compute the corresponding memory requirements atRt as the number of forward-
ing entries times the size of a single bloom filter edge encoding. Assuming the worst-case
scenario of 2,400 neighbor edges and 128-byte bloom filters,the total forwarding memory re-
quirements atRt would not exceed 307KB and this amount can be comfortably accommodated
on line cards with current TCAM usage [25].

Forwarding State at the Origin Border Router. The forwarding state at the source
border routerRs is made up of the cached shim headers for multicast groups with active
sources within the router’s local domain. To estimate the memory requirements for the cached
forwarding state atRs, we consider a domain with active senders inA distinct groups and, as
before, use a zipfian group popularity distribution to modelreceivers’ behavior. In this experi-
ment, we also enforce a minimum group size of 8 domains to avoid populating the cache with
uncharacteristically small trees and 25 of the groups are multicasting to the entire Internet (i.e.,
have members in every domain). For each resultant group, we construct its dissemination tree,
generate the appropriateTREE_BF encodings, and compute the amount of cache memory
consumed by these encodings.

Figure 5 plots the total cache memory requirements for increasing values of A. We see that
if we assume on the order of several hundred megabytes of RAM on line cards, our scheme
would permit fast-path forwarding for up to several hundredthousand active groups. The initial
sub-linear scaling trend is likely due to the fact that cacherequirements for highly popular
groups dominate the initial cache size, whereas the subsequent linear trend reflects our limit
on the minimum group size.

25

 0

 100

 200

 300

 400

 500

 600

 700

 800

 100 1000 10000 100000 1e+06

H
ea

de
r

C
ac

he
 S

iz
e

(M
B

)

A - Number of Groups with Active Sources

Figure 5:Shim header cache size as a function of A (the number of groupswith active sources
in the local domain).

5.2 Bandwidth Overhead

5.2.1 Overhead of Group Membership Update Traffic

The bandwidth cost of group membership update traffic is determined primarily by the rate
at which groups are added to, or removed from, a domain’sGRP_BF encoding and we use
back-of-the-envelope calculations to demonstrate that the cost of membership update propaga-
tion is tractable.

Recall from Section 4.1 that a domain updates its membershipstate for a given groupG
only when the number of local members inG rises above zero or drops below one - a relatively
rare event, particularly if withdrawals are damped, as suggested in [26].

Consider a (fairly stressful) scenario where every domain sees one such event (appearance
of a new group or departure of an existing group) every second. Changes in the membership
state are communicated as deltas (the set ofGRP_BF bit positions to be modified) and if
we assume that 5 hash functions are used to generate theGRP_BF encoding and that bit
positions are represented as 24-bit values then conveying membership updates for a single
prefix requires approximately 15 bytes of traffic per second3.

If we assume the presence of 300,000 active prefix entries in the full BGP FIB (current
reports indicate approximately 270,000 entries [27]) thenthe total bandwidth consumed by
incoming membership updates would be approximately 4.5MBps - a small fraction of the total
capacity at a core border router.

3This estimate takes into account only the length of theFRM_GRP_UPDATE attribute and does not include
other fields of a BGP UPDATE message or its header.

26

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 100 1000 10000 100000 1e+06 1e+07

T
ot

al
 N

um
be

r
of

 P
ac

ke
t T

ra
ns

m
is

si
on

s

Group size

Ideal Multicast
FRM

Unicast

Figure 6:The total number of packet transmissions (Npkt
FRM) for increasing group sizes.

5.2.2 Packet Forwarding Overhead

The bandwidth penalty due to FRM forwarding is threefold:

1. The per-packet shim header containing the encoded subtree.

2. The redundant transmissions incurred in situations where subtrees are too large to be
encoded in a single header.

3. Unnecessary transmissions due to false positives in theTREE_BF encoding.

We begin by examining the overhead due to redundant transmissions (item 2). Given a
dissemination treeTS rooted at a domainS, we quantify this overhead using the following two
metrics:

• Npkt
FRM (e) (for e ∈ TS): The number of transmissions overe required to multicast a

single packet using our scheme from the source to all group members.

• Npkt
FRM : The total number of packet transmissions required to multicast a single packet

using our scheme from the source to all group members:

Npkt
FRM

.
=
∑

e∈TS

Npkt
FRM (e).

We calibrate FRM’s performance against (1)ideal multicast, in which precisely one packet
is transmitted along each edge of the dissemination tree (∀e ∈ TS : Npkt

FRM (e) = 1) and (2)
simpleper-domain unicast, in which the source transmits a copy of the packet to each member
domain individually.

27

Figure 7:CDF of Npkt
FRM(e) for FRM and unicast.

Figure 6 showNpkt
FRM as a function of group size, providing an objective comparison be-

tween FRM, ideal multicast, and unicast4. We observe that for all group sizes, the number of
transmissions incurred by FRM is quite close to that of idealmulticast (0-2.4% higher). As
expected, the difference between FRM and the ideal forwarding scenario grows with the in-
creasing number of group members, since larger trees resultin a larger number of shim headers
(and hence an increased number of duplicate transmissions). In all cases, however, our scheme
achieves improvement over plain unicast, which can requiremore than twice the bandwidth of
FRM for large multicast groups (over 1 million users).

We now turn to examining the per-edge bandwidth overhead. Figure 7 shows the CDF
of Npkt

FRM (e) for FRM and per-domain unicast for three different group sizes and we see that
in all cases, over 90% of edges see exactly one transmission.However, in the case of simple
unicast, the worst-case number of transmissions per link isnearly 4 orders of magnitude greater
than that of ideal multicast for very large groups. By comparison, FRM forwarding offers
significant saving in bandwidth overhead, allowing over 99.5% of edges to see exactly one
packet transmission. The worst-caseNpkt

FRM (e) value for FRM with 10 million members is

4In this experiment we assume the use of a fixed 100-byte shim header, which amounts to approximately 10%
per-packet overhead on typical data.

28

157 - a substantial improvement over 6,950 transmissions for plain unicast.
While the worst-case overhead of 157 transmission incurredby our scheme is certainly

non-negligible, it should be noted that our tests simulate afairly stressful scenario: 10 million
multicast users with no topological locality results in every domain having a group member.
This is equivalent to broadcasting to the entire Internet and one might argue that for such
cases, FRM’s overhead of 157 packet copies on a single link represents a reasonable penalty.
Additional examination revealed that the highestNpkt

FRM (e) values are seen by large ISPs,
whose connectivity is characterized by a high AS degree and alarge number of downstream
domains.

We also note that one might consider adopting a number of optimizations to reduce this
transmission overhead even further. For instance, if the number of tree edges from a domain
A ((A → B), (A → C), ...) constitutes a large fraction ofA’s entire edge set, the source
border router could replace these edges by a singleaggregate edge(A → ∗) that instructsA
to forward the received packet to all neighboring domains (except the one on which the packet
has arrived). This optimization could reduce the total number of edges in theTREE_BF
encoding and, correspondingly, the number of duplicate packet transmissions, while sacrificing
the precision of the encoding and making it more susceptibleto false positives. We refer the
reader to [28] for a more extensive discussion of link aggregation, as well as several other
optimizations to the basic FRM forwarding scheme presentedhere.

Evaluation of Bandwidth Efficiency. While the number of redundant packet transmis-
sions provides a meaningful metric for evaluating the bandwidth cost of FRM forwarding, we
remind the reader that the total bandwidth overhead incurred by our scheme is a combination
of three distinct factors: the per-packet cost of the shim header, the overhead of redundant
transmissions, and the penalty of unnecessary transmissions incurred by false positives in the
TREE_BF encoding. Hence, one might argue that the most objective performance compari-
son can be achieved by evaluating our design using a metric that takes into account all of these
sources of overhead. Toward this end, we will examine the FRMforwarding scheme from
the standpoint ofbandwidth efficiency. Informally, we are interested in the ratio between the
number ofbytestransmitted using the FRM scheme and the minimal amount thatcould be
achieved by deploying an "ideal" multicast protocol. We will examine this ratio for individual
edges on the dissemination tree, for the tree as a whole, and for the entire topology.

Consider a scenario in which a domainS multicasts a single data packet of lengthLPKT

to a set of receivers in a topologyT along a dissemination treeTS ⊂ T . For each edgee ∈ TS ,
we define the bandwidth efficiency achieved by FRM as

EFRM (e)
.
=

LPKT

N bytes
FRM (e)

.

N bytes
FRM (e) denotes the total number of bytes transmitted alonge using the FRM scheme:

N bytes
FRM (e)

.
= Npkt

FRM (e) · (LTREE_BF + LPKT),

whereNpkt
FRM (e) is the number of packet transmissions alonge andLTREE_BF is the length

of the shim header in bytes. Note thatEFRM (e) = 1 corresponds to the "ideal" forwarding

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

B
an

dw
id

th
 E

ffi
ci

en
cy

TREE_BF False Positive Rate

FRM, LTREE_BF = 64 bytes
FRM, LTREE_BF = 128 bytes
FRM, LTREE_BF = 256 bytes
FRM, LTREE_BF = 512 bytes

Unicast

(a) Etree
FRM - efficiency along the dissemination tree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

B
an

dw
id

th
 E

ffi
ci

en
cy

TREE_BF False Positive Rate

FRM, LTREE_BF = 64 bytes
FRM, LTREE_BF = 128 bytes
FRM, LTREE_BF = 256 bytes
FRM, LTREE_BF = 512 bytes

Unicast

(b) Etop
FRM - overall efficiency in the topology.

Figure 8:FRM bandwidth efficiency as a function of the target false positive rate for different
choices ofLTREE_BF .

scenario, which is unattainable in our scheme even with the optimal number of transmissions
due to the overhead of the shim header.

We also consider the efficiency of bandwidth usage for the dissemination tree as a whole:

Etree
FRM

.
=

|TS | · LPKT
∑

e∈TS
N bytes

FRM (e)
,

where|TS | denotes the number of edges in the tree.
The bandwidth efficiency of unicast forwarding to the same set of receivers provides a

meaningful basis for comparison:

Etree
U

.
=

|TS | · LPKT
∑

e∈TS

(

Npkt
U (e) · LPKT

) =
|TS |

∑

e∈TS
Npkt

U (e)
.

The penalty due to false positives in the subtree encoding can be quantified in terms of the
number of bytes transmitted over non-participant edges:N bytes

FRM (e) for e ∈ T\TS .
Finally, we define the topology-wide efficiency of FRM forwarding as the ratio of the

minimum bandwidth usage achievable by "ideal" multicast tothat incurred by our scheme (the
latter includes the overhead of transmissions along off-tree edges due to false positives):

Etop
FRM

.
=

|TS | · LPKT
∑

e∈T N bytes
FRM (e)

.

Note thatT tree
FRM ≈ T top

FRM represents the desirable case, in which most of packet trans-
missions occur along the forwarding path defined by the dissemination tree, while the non-
participant routers do not experience a large penalty because of false positives in the encoding.

30

AS 1 R1 AS 3 R3

R2

AS 2

…
False Positive on (3

�
1)

Figure 9:Emergence of a routing loop as result of a false positive in theTREE_BF encoding.

We ran a set of simulations to evaluate the FRM forwarding scheme with respect to the
bandwidth efficiency metrics described above. In these simulations, we used an Inet-generated
[29] topology with 30,000 AS nodes, 20,000 of which were assigned to have group members.
We generated a dissemination tree rooted at a leaf domain with a single upstream provider,
computed its subtree encodings, and simulated the FRM forwarding process for a single data
packet of length 1KB.

Figure 8(a) plots the resulting value ofEtree
FRM as a function of the target false positive

rate for different values ofLTREE_BF and provides a comparison withEtree
U (the bandwidth

efficiency of unicast forwarding). Figure 8(b) shows the corresponding values ofEtop
FRM , which

include the overhead of extraneous transmissions along edges that do not belong to the tree. We
see that for both metrics, FRM offers a substantial improvement over plain unicast and comes
fairly close to achieving optimal efficiency with the right choice of the encoding parameters.
Using a 256-byte shim header and the target false positive rate of0.01%, our scheme achieves
Etree

FRM = 0.766 andEtop
FRM = 0.744. By comparison, unicast achieves only0.294.

Our results also suggest that the overall efficiency of FRM forwarding is affected to a
significant extent by the choice of the shim header length (LTREE_BF). A small shim header
decreases the per-packet overhead, but at the same time reduces the maximum size of a subtree
that can be transmitted in a single packet, thus increasing the number of duplicate transmissions
and vice versa. In our simulations, a moderately large shim header of length256 bytes yielded
the best bandwidth efficiency results.

As expected, raising the false positive thresholdRatefp increases the difference between
Etree

FRM andEtop
FRM by permitting a larger number of unnecessary transmissionsalong the non-

participant edges. IncreasingRatefp also reduces the number of duplicate transmissions and
can thus be expected to increase the tree bandwidth efficiency (Etree

FRM), but our simulation
results suggest that this intuition may not be true. To the contrary, the net effect of admitting

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

E
dg

e
B

an
dw

id
th

 E
ffi

ci
en

cy

Percentage of Edges on the Dissemination Tree

FRM, LTREE_BF = 64 bytes
FRM, LTREE_BF = 128 bytes
FRM, LTREE_BF = 256 bytes
FRM, LTREE_BF = 512 bytes

(a) The cumulative distribution ofEFRM (e) for e ∈
TS and different choices ofLTREE_BF . (Note the x-
axis scale).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 500 1000 1500 2000 2500 3000 3500 4000

B
an

dw
id

th
 O

ve
rh

ea
d

(B
yt

es
)

Number of Non-Tree Edges

FRM, LTREE_BF = 64 bytes
FRM, LTREE_BF = 128 bytes
FRM, LTREE_BF = 256 bytes
FRM, LTREE_BF = 512 bytes

(b) The distribution ofN bytes
FRM (e) for e ∈ T/TS and dif-

ferent choices ofLTREE_BF . A point positioned at(x, y)
on this plot indicates:x non-tree edges see the overhead
of y bytes or less.

Figure 10: The distribution of bandwidth overhead across (a) edges inTS and (b) edges in
T/TS.

a larger number of false positives is a reduction in bandwidth efficiency despite the savings in
the number of duplicate transmissions. Overall, a conservatively-chosenRatefp value (below
0.1%) appears to be a generally safe choice. Further investigation revealed that the sharp
decline in bandwidth efficiency beyondRatefp = 0.2% can be attributed to emergence of
routing loops - a scenario illustrated in Figure 9. In this Figure, a multicast packet is being
forwarded along the path (AS1 → AS2 → AS3). When the packet reachesAS3, a bloom
filter lookup on (AS3 → AS1) in the shim header results in a false positive and causesR3 to
forward the packet back toR1, thus creating a loop (AS1 → AS2 → AS3 → AS1 → ...). In
our simulations, routers discard a packet copy once its TTL,initially set to 32, reaches 0.

Figure 10(a) plots the CDF ofEFRM (e) for e ∈ TS with the false positive rate fixed
at 0.01% and we see that our scheme achieves efficient utilization of bandwidth for the vast
majority of edges on the tree. If we examine the CDF forLTREE_BF = 256 bytes, which,
according to Figure 8(b) achieves the highest level of efficiency for the topology as a whole,
over 98.7% of edges inTS are utilized with the efficiency of 0.8 (which corresponds toexactly
one packet transmission) and only 0.2% (36 edges in absoluteterms) see the efficiency of 0.4
or less. The worst-cast efficiency value experienced by a single edge inTS is 0.004, which
corresponds to 194 packet transmissions.

Figure 10(b) evaluates the bandwidth penalty imposed upon the off-tree edges (T\TS) as
result of false positives in theTREE_BF encoding. We plot this quantity for different choices
of LTREE_BF and a fixed false positive threshold of 0.01%. As expected, a small shim header
increases the number of distinct subtree encodings and, accordingly, the number of non-tree
edges that receive a packet transmission as result of a falsepositive hit. ForLTREE_BF = 256,
only 310 edges see unsolicited packet transmissions, whichmight well represent a reasonable

32

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

B
an

dw
id

th
 E

ffi
ci

en
cy

TREE_BF False Positive Rate

FRM
FRM with off-path edge pruning

(a) Etree
FRM - efficiency along the dissemination tree.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004

B
an

dw
id

th
 E

ffi
ci

en
cy

TREE_BF False Positive Rate

FRM
FRM with off-path edge pruning

(b) Etop
FRM - overall efficiency in the topology.

Figure 11:FRM bandwidth efficiency as a function of the target false positive rate with and
without edge pruning (LTREE_BF = 256).

penalty considering the scale of our simulated scenario. The worst-case overhead of 94,720
bytes (the equivalent of 74 packet transmissions) is experienced by only one of the edges and
over 86% of them see exactly one transmission, which amountsto 1,280 bytes of overhead.

Optimizing Bandwidth Efficiency. While the results presented in the preceding section
suggest that the bandwidth overhead incurred by the FRM forwarding scheme remains within
reasonable bounds even under very stressful scenarios, we now consider an additional opti-
mization that allows us to reduce the bandwidth penalty evenfurther.

The high-level question we would like to answer is: to what extent does additional knowl-
edge about the underlying topology and the unicast routing paths help in improving the band-
width efficiency of our scheme? Clearly, replacing the underlying unicast routing infrastruc-
ture with a policy-compliant link state protocol would altogether obviate the need for a shim
header, eliminate the problem of false positives and, in fact, allow us to achieve "ideal" mul-
ticast with respect to bandwidth efficiency. Since this approach would face a daunting barrier
to deployment in the current Internet, we instead consider the following optimization that op-
erates within the constraints of the current BGP infrastructure:

Suppose there exists a mechanism that allows any transit router R, whose AS
neighbors in the topology are given byNeighb(R), to determine, for any source
domainS, the subset of its neighborsNeighb∗(S,R) ⊂ Neighb(R) such that
∀N ∈ Neighb∗(S,R) : R’s domain isnot on the unicast routing path currently
used byS to reachN .

Knowledge of this additional information allows us to optimize the transit forwarding func-
tionality in FRM: transit routers can simply avoid propagating packets along edges that are
knownnot to be on the tree. Our simulation results suggest that this optimization, which we

33

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 50 100 150 200 250 300 350 400

B
an

dw
id

th
 O

ve
rh

ea
d

(B
yt

es
)

Number of Non-Tree Edges

FRM
FRM with off-path edge pruning

Figure 12:The distribution of bandwidth overhead across edges inT/TS with and without
edge pruning (Ratefp = 0.01%, LTREE_BF = 256).

call off-path edge pruning, produces substantial savings in the forwarding bandwidthcost.
More specifically, this optimization:

1. Produces a measurable improvement in bandwidth efficiency with respect to bothEtree
FRM

andEtop
FRM .

2. Makes the occurrence of routing loops less likely.

3. Reduces the number of extraneous transmissions due to false positives in the encoding
and hence lessens the bandwidth penalty imposed upon the routers off the dissemination
path.

Figure 11 quantifies the improvement in bandwidth efficiencyand plotsEtree
FRM andEtop

FRM

with LTREE_BF = 256 as a function of the false positive rate with and withoutedge pruning.
We see that although edge pruning does not improve the maximum achievableEtree

FRM value
(both schemes achieve the best-case value of 0.766 withRatefp set to 0.01%), it does offer
improvement over the basic scheme under higher false positive threshold values. For instance,
Ratefp = 0.32% yieldsEtree

FRM = 0.247 (below that of unicast) and edge pruning improves
this value to 0.723. Investigation revealed that improvements come primarily from the reduced
number of routing anomalies, such as the one shown in Figure 9, that would have otherwise
occurred due to a large number of false positives.

More importantly, however, edge pruning improves the topology-wide bandwidth effi-
ciency (Etop

FRM), as can be seen from Figure 11(b), by reducing the number of unsolicited

34

packet transmissions along edges that do not belong to the tree. In the best-case scenario
(Ratefp = 0.01%), edge pruning improvesEtop

FRM from 0.744 to 0.754 and, as expected, the
magnitude of improvement grows with the false positive threshold.

To further understand the effects of this optimization on reducing the overhead of erroneous
transmissions, we examined the distribution of bandwidth overhead along the edges inT/TS

for Ratefp = 0.01% andLTREE_BF = 256. The results are shown in Figure 12. Without
edge pruning, 310 non-tree edges see unsolicited traffic and43 of these edges see two or more
packet copies. The pruning optimization reduces the numberof edges penalized by our scheme
to 113 and only 14 of them see more than one packet.

6 FRM: Implementation

We have implemented a software-based prototype of an FRM router that runs under the Linux
operating system and makes use of the eXtensible Open RouterPlatform (XORP) [30]. Our
implementation supports all main elements of the design, asdescribed in the preceding sections
and has been successfully deployed and benchmarked in a controlled test environment.

Figure 13 illustrates the overall structure of the prototype. At a high level, our implementa-
tion consists of a Linux kernel module that performs the functions of the forwarding plane and
a user-level component that maintains group membership state and handles the propagation of
membership update reports to neighboring domains. The user-level module runs in the exe-
cution context of the XORP BGP daemon (xorp_bgp) and communicates with the kernel-side
FRM module via the Linux netlink mechanism [31] - a standard feature of the Linux OS that
allows the kernel to request service from a user-level process and vice versa through a generic
socket-like interface.

In the kernel-side module, the FRMHdrCache data structure caches forwarding state for
groups with active sources in the router’s local domain, while the BGPPeerTable holds the
encodings of edges to neighboring domains used to forward transit packets. Group member-
ship bloom filters are maintained by thexorp_bgp daemon as a component of its Routing
Information Base (RIB).

At present, our FRM prototype lacks support for interfacingwith intra-domain multicast
routing protocols. As an interim mechanism, we implement intra-domain forwarding using
the LocalGrpMembers data structure in the kernel module that stores the IP addresses of local
group members for each active group. A more scalable implementation might, for instance,
store the IP address of the group’s local rendezvous point (assuming the use of PIM-SM within
a domain).

6.1 Packet Processing

When a multicast packet arrives on one of the router’s interfaces, Linux delivers it to the FRM
kernel-level module, which in turn invokes its packet forwarding code path (Figure 14).

Since in the core FRM forwarding scheme, packet processing actions in the source domain
are somewhat different from those associated with forwarding transit packets, we first examine
the packet’s source IP address to determine its origin.

35

TCP

DomainPrefix ActiveGroups

Prefix1 GrpFilter1

Prefix2 GrpFilter2

Prefix3 GrpFilter3

,,, …

 netlink

GrpNum Nexthops GrpNum MemberIP AsNum NexthopIP

[AS1, HDR1] xxx.xxx.xxx.xxx AS1 xxx.xxx.xxx.xxx

[AS2, HDR2] xxx.xxx.xxx.xxx AS2 xxx.xxx.xxx.xxx

[AS3, HDR3] xxx.xxx.xxx.xxx AS3 xxx.xxx.xxx.xxx

[AS4, HDR4] xxx.xxx.xxx.xxx … …

[AS5, HDR5] xxx.xxx.xxx.xxx

… … … … LocalAsNum

ASLocal

user

kernel

FRM kernel module

FRMHdrCache LocalGrpMembers BGPPeerTable

xorp_bgp

AS1 BGP peer

AS2 BGP peer

AS3 BGP peer

BGP RIBLocalGrpMembership

{G3, G4}

GrpFilterLocal

G1

G2

G3

G4

Figure 13:Software architecture of the FRM prototype.

6.1.1 Source Domain Processing

If the source address indicates that the packet originated in the router’s local domain, we invoke
thesource forwarding code path(Figure 15). Recall from Section 4.2.1 that forwarding in the
origin domain involves constructing the multicast dissemination tree for the destination group
and propagating copies of the packet to the source’s immediate children in the tree, augmenting
each copy with a shim header that contains a bloom filter encoding of the subtree rooted at that
node.

We first check whether the requisite forwarding state for thepacket’s destination group is
present in the FRMHdrCache data structure.

Source domain: cache miss In the event of a cache miss, the kernel makes an upcall to
xorp_bgp to request the dissemination tree for the packet’s destination group. Upon receipt of
the kernel’s request, the BGP daemon scans its RIB, identifies those destination prefixes whose
GRP_BFs indicate membership in the specified group, and computes the tree from the union
of the corresponding unicast routes. The daemon splits up the resulting tree into one or more

36

/**** Main entry point for FRM forwarding at a border router ****/
static void frm_forward(struct packet *pkt) {

uint16_t chksum_in_packet, chksum_computed;
struct frmhdr *frmh;
struct iphdr *iph;
uint16_t hdrlen;

iph = (struct iphdr *)pkt->data;

// Perform several checks and discard invalid packets
if ((pkt->len < MIN_IPHDR_LEN) || // Invalid header format

(!MULTICAST(iph->daddr)) || // Invalid destination group address
(iph->ttl == 0)) // TTL has expired

goto drop;

iph->ttl--; // Decrement the TTL value
if (iph->ttl == 0)
goto drop;

if (addr_in_local_domain(iph->saddr)) {
// The source address is in the local domain; we are the source border router

// If this is an IGMP group membership report, update the LocalGrpMembers table
if (iph->protocol == IPPROTO_IGMP)

frm_process_igmp(pkt);
else

frm_forward_source(pkt); // Invoke the source forwarding codepath

} else {
// The packet originated in a remote domain; we are a transit router
frmh = (struct frmhdr *)(pkt->data + (iph->ihl * 4));
if (!IS_VALIDFRMHDR(frmh)) // Verify presence of the shim header

goto drop;

// Verify checksum in the FRM header
chksum_in_packet = FRMHDR_GETCHKSUM(frmh);
FRMHDR_SETCHKSUM(frmh, 0);
hdrlen = sizeof(struct frmhdr) + FRMHDR_GETBLOOMLEN(frmh);
chksum_computed = frm_shimhdr_chksum((char *)frmh, hdrlen);
if (chksum_in_packet != chksum_computed)

goto drop; // Invalid checksum

// Restore the checksum in the header (it was reset to zero above)
FRMHDR_SETCHKSUM(frmh, chksum_in_packet);

frm_forward_transit(pkt); // Invoke the transit forwarding codepath

// Forward the packet to all active members in the local domain
frm_forward_local(pkt);

}

done:
return;

drop:
log_packet_drop(pkt);
goto done;

}

Figure 14: Implementation of the main packet forwarding code path (non-essential details
are omitted).

37

/**** Packet forwarding at the source border router ****/
static void frm_forward_source(struct packet *pkt) {

uint16_t iphdrlen_bytes, shimhdrlen_bytes;
uint32_t group_num, payload_bytes;
struct hdrcache_item *cacheitem;
struct iphdr *iph, *newiph;
struct msg_needheader msg;
struct packet newpkt;

iph = (struct iphdr *)pkt->data;
group_num = IPADDR_TO_GRPNUM(iph->daddr);

// Look up the destination group address in the shim header cache
if ((cacheitem = hdrcache.lookup(group_num)) == NULL) {
/* Header not found in the cache. Enqueue the packet and request the

dissemination tree from the BGP daemon. */
waittable.addPacket(pkt, group_num);

// Send the header request signal to the XORP daemon
msg.group_num = group_num;
sendmsg_to_bgp(MSG_NEEDHEADER, &msg, sizeof(msg));

} else {
// Found a cached header for this group

// Allocate a new packet buffer that contains a placeholder for the shim header
iphdrlen_bytes = iph->ihl * 4;
shimhdrlen_bytes = config.getMyShimHdrLen();
payload_bytes = pkt->len - iphdrlen_bytes;

newpkt.len = pkt->len + shimhdrlen_bytes;
newpkt.data = (char *)malloc(newpkt.len);

newiph = (struct iphdr *)newpkt.data;
newpayload = newpkt.data + iphdrlen_bytes + shimhdrlen_bytes;

// Copy the IP header into the new packet buffer
memcpy(newiph, iph, iphdrlen_bytes);

// Copy the payload into the new packet buffer
memcpy(newpayload, pkt->data + iphdrlen_bytes, payload_bytes);

/* Increment the ’length’ field of the new IP header to reflect the
addition of the shim header and recompute its checksum. */

newiph->tot_len = htons(newpkt.len);
newiph->check = 0;
newiph->check = compute_ip_csum(newiph);

// Forward the packet to children on the dissemination tree
frm_forward_source_cachehit(&newpkt, cacheitem);

// Deallocate the packet buffer
free(newpkt.data);

}
}

Figure 15:Implementation of the source forwarding code path (non-essential details are omit-
ted).

38

/****
This routine is invoked at the source border router to initiate the dissemination
of a multicast packet once a valid header cache item (struct hdrcache_item) has been
obtained. The cache item contains the set of next hops and pre-computed shim headers
(one for each child on the tree).

****/
static void frm_forward_source_cachehit(struct packet *pkt, struct hdrcache_item *item) {

struct neighbour_as *neighb;
struct frmhdr *frmh;
struct iphdr *iph;
char *hdrdata_ptr;
uint16_t as_num;
unsigned int i;

iph = (struct iphdr *)pkt->data;
frmh = (struct frmhdr *)(pkt->data + (iph->ihl * 4));

hdrdata_ptr = item->hdrdata;
for (i = 0; i < item->num_nexthops; i++) { // For each child on the tree...
as_num = item->nexthop_asnums[i];

/* Resolve the child AS number into a neighbor structure that contains the requisite
forwarding information. */

neighb = config.getNeighbour(as_num);

memcpy(frmh, hdrdata_ptr, item->hdrlen); // Copy the shim header into the packet buffer

frm_sendpkt_nexthop(pkt, neighb); // Forward the packet to the child domain

hdrdata_ptr += item->hdrlen; // Advance the header buffer pointer
}

}

Figure 16:Implementation of the source forwarding code path: cache hit (non-essential de-
tails are omitted).

subtrees (one for every direct child of the local AS) and responds to the kernel with a set of
structures of the form(ASx, SubTreex), whereASx is the AS number of a direct child node
andSubTreex is a list of edges representing the subtree rooted atASx. The kernel parses
this response, encodes the supplied edges into bloom filters, and constructs a set of FRM shim
headers - one for every child nodeASx.

Once the headers are computed, a copy of the packet, augmented with an appropriate shim
header, is made for each child domain and then forwarded toward that child’s next hop address.
For efficiency reasons, we use an auxiliary data structure (BGPPeerTable) in the kernel to
map between the AS number of a BGP peer and its corresponding next-hop IP address and a
subsequent lookup in the kernel’s main forwarding table resolves the next-hop IP into a pointer
to the outgoing network interface. Finally, we insert the destination group address and the set
of shim headers for each child AS into FRMHdrCache. This datastructure is indexed by group
address and uses a basic LRU replacement scheme.

Source domain: cache hit In the event of a cache hit, packet processing is extremely
simple (Figure 16). A lookup in FRMHdrCache produces the setof next-hop AS numbers and

39

the associated shim headers. A copy of the packet is made for each child entryASx associated
with the destination group; the packet is augmented with thecached shim header and sent to
ASx. Note that the upcall to the XORP BGP daemon is required only in the event of a cache
miss.

The use of FRMHdrCache can greatly reduce the per-packet processing overhead at the
source border router, since a cache lookup is vastly more efficient than full recomputation of
the tree. However, as we explain below, this improvement comes at the cost of having to
invalidate a (potentially large) number of cached elementsin response to a group membership
event in a remote domain.

6.1.2 Transit Domain Processing

If the packet did not originate in the router’s local domain,we invoke thetransit forwarding
code path(Figure 17). We decrement the packet’s TTL, iterate throughthe BGPPeerTable
and, for each peerASx, check for the presence of the edge(ASLocal → ASx) in the packet’s
TREE_BF . If the edge is present, we forward a copy of the packet towardthe next-hop
address forASx. As the last step, we strip off the FRM shim header and forwarda copy of the
packet to every active local group member listed in the LocalGrpMembers table.

6.1.3 Packet Processing Overhead

We measure the forwarding latency for each of the forwardingcode paths described above
- source cache hit, source cache miss, and transit. Our measurements were conducted on a
1.8GHz IBM Thinkpad with 1GB RAM running the prototype FRM code under Linux RedHat
9, kernel level 2.4.20-8. For each code path, we measure the time interval between the packet’s
handoff to the FRM module and the time at which the last copy ofthe packet is enqueued for
transmission over the outgoing interface. The latency results presented below are averaged
over 1,000 incoming packets.

Table 2 illustrates the average per-packet forwarding timefor the source cache hitcode
path and we test performance for different packet sizes and fanout values (i.e., the number
of outgoing copies). For calibration, we also measure the processing latency achieved by the
standard Linux kernel implementation of multicast forwarding. As expected, FRM process-
ing time scales linearly with the number of outgoing packet copies, while larger packets take
longer to process due to the higher memory copy overhead. Relative to native multicast for-
warding, FRM exhibits similar scaling behavior but is always slower in the absolute and further
examination revealed that the difference in performance isprimarily due to the fact that our
implementation incurs one additional buffer copy for everypacket sent. In standard multicast,
an identical copy of the packet is sent to all outgoing interfaces, while our scheme requires
generating a distinct copy (with the appropriate shim header) for every neighbor and hence
replicating the original buffer.

To measure the forwarding time for packets that suffer a cache miss, we populate the RIB
with an Oct’04 snapshot of the Internet BGP table containing117,519 prefix entries and ini-
tialize a fractionF of these entries to indicate membership in the packet’s destination group.
In this experiment, we maintain the group membership data inbloom filters of length 2KB and

40

/**** Packet forwarding at a transit router ****/
static void frm_forward_transit(struct packet *pkt) {

uint32_t bloomlen_bytes, num_hash;
struct neighbor_as *neighb;
struct frm_tree_edge edge;
struct frmhdr *frmh;
struct iphdr *iph;
uint16_t forward;
char *bloomdata;

iph = (struct iphdr *)pkt->data;
frmh = (struct frmhdr *)(pkt->data + (iph->ihl * 4));

bloomdata = ((char *)frmh) + sizeof(struct frmhdr);
bloomlen_bytes = FRMHDR_GETBLOOMLEN(frmh);
num_hash = FRMHDR_GETNUMHASH(frmh);

if ((bloomlen_bytes * BITS_PER_BYTE) == config.getMyShimBloomLen()) {
/* The ’fast’ path: lookup each neighbor in the shim header using

pre-computed encodings. */
while ((neighb = config.getNextNeighbor(neighb)) != NULL) {

forward = frm_bloom_lookup_from_bits(bloomdata, bloomlen_bytes,
neighb->bloom_bitpos, num_hash);

if (forward)
frm_sendpkt_nexthop(pkt, neighb);

}
} else {
// The ’slow’ path: perform a full bloom filter lookup
edge.src_as = config.getMyASNum();
while ((neighb = config.getNextNeighbor(neighb)) != NULL) {

edge.dst_as = neighb->as_num;
forward = frm_bloom_lookup(bloomdata, bloomlen_bytes,

num_hash, &edge);
if (forward)

frm_sendpkt_nexthop(pkt, neighb);
}

}
}

Figure 17:Implementation of the transit forwarding code path (non-essential details are omit-
ted).

6 hash functions are used to generate the encoding. Table 3 lists the forwarding latency for a
single 512-byte packet atRs for an increasing number of member prefixes included in the tree.
The reported latency includes the cost of scanning the BGP RIB, constructing the dissemina-
tion tree, generating the appropriateTREE_BF encodings (we use 256-byte bloom filters
with 6 hash functions), replicating the outgoing packet, and enqueuing the outgoing copies for
transmission. We see that in the worst case where every prefixhas an active group member, it
takes approximately 303.2ms to forward the packet and further investigation revealed that the
processing time is dominated by the cost of scanning the RIB.While clearly expensive, we do
not view the processing latencies of cache misses as cause for concern for two reasons: First,
these measured latency values are entirely dependent on theprocessor speed and other hard-
ware characteristics of the router which, in our case, is a uniprocessor IBM Thinkpad and in
reality, header construction can be parallelized and optimized on SMPs. Second, this latency

41

Fanout Linux multicast FRM FRM FRM
1-byte packets 1-byte packets 128-byte packets 1024-byte packets

1 0.4 0.7 0.8 1.2
128 25.4 64.8 76.2 89.5
256 50.7 132.5 154.2 177.5
512 101.2 262.7 308.6 351.4

Table 2:Forwarding latency (in microseconds) atRs when the destination group is in FRMH-
drCache.

Member prefixes 0 459 1836 7345 29380 117519
(F = 0) (F = 1/256) (F = 1/64) (F = 1/16) (F = 1/4) (F = 1)

Processing time 65.8 68.3 74.5 89.1 124.8 303.2

Table 3:Forwarding latency (in milliseconds) for a 512-byte packetat Rs when the destination
group is not in FRMHdrCache.

is only incurred on the first packet sent to a group and cache misses can be rendered even more
infrequent via pre-computation and an appropriate choice of the cache size.

Finally, Table 4 reports the forwarding latency atRt for transit packets. We measure the
processing time for a single packet 512-byte packet under different tree fanout values and
repeat the measurement for different sizes of the BGPPeerTable. The size and format of the
TREE_BF encoding is the same as in the previous experiment. We observe that as with
source-domain forwarding, the processing time scales linearly with the number of outgoing
packet copies and, as expected, also exhibits linear dependence on the domain’s AS degree.
Overall, transit forwarding is efficient and only marginally more expensive than a cache hit at
the source border router for the same fanout value.

In summary, the design of FRM admits a straightforward and efficient implementation of
the cache hit and transit forwarding code paths that achieveefficiency comparable to that of the
native multicast forwarding mechanism in the Linux kernel.For cache misses, we believe that
a combination of hardware and software optimizations alongwith a sufficient cache memory
allotment can make the performance impact of misses negligible. However, an exploration
and evaluation of performance optimizations merits further study, particularly in the context of
realistic router hardware configurations.

6.2 Advertising Group Membership Updates

When an endhost joins or leaves a multicast group, an IGMP membership report is generated
and delivered to its designated router (DR). In our current implementation, we modify DRs
to relay these membership events directly to the source FRM routerRs. Upon receipt of this
group membership event, the kernel-side FRM component updates its LocalGrpMembership
table. If the event in question triggers a domain-level membership change (i.e., activation of

42

Fanout AS degree AS degree AS degree AS degree AS degree AS degree
1 32 128 256 512 1024

1 7.6 10.9 17.0 27.7 45.6 81.4
32 38.8 43.8 54.5 73.5 113.4
128 127.1 137.1 159.4 204.5
256 220.7 248.8 308.0
512 402.2 465.2
1024 748.7

Table 4:Transit forwarding latency (in microseconds) for a 512-byte packet atRt.

a previously-inactive group or vice versa), the kernel module issues an upcall toxorp_bgp,
notifying it of the membership update. In response, the BGP daemon updates the local do-
main’s membership bloom filter and calculates the delta fromits previous value (expressed as
the list of modified bit positions). Having done that, the daemon initiates global dissemination
of the updated membership state by re-advertising the domain’s prefix to its BGP peers and
augmenting the advertisement with theFRM_GRP_UPDATE path attribute that contains
the membership delta. Multiple successive membership updates may be combined and sent in
a single BGP advertisement to reduce the overhead of BGP traffic at the expense of increased
join latency.

When a peerxorp_bgp daemon receives anFRM_GRP_UPDATE, it extracts the list
of modified bit positions and applies this update to itsGRP_BF state for the corresponding
prefix. Since the update may cause some subset of cached tree encodings in FRMHdrCache to
become stale, the daemon then issues an invalidation request to the kernel module, which, in
turn, purges all affected entries from FRMHdrCache.

It is easy to verify that for a given set of modified bit positions Bm and a given groupG
whose bloom filter representation is a set of bit positionsBG, the cache item associated withG
requires invalidation if and only ifBG ∩Bm 6= ∅. Since a full linear scan of FRMHdrCache to
identify such entries can be quite expensive, our implementation uses an auxiliary kernel-level
data structure to efficiently resolve a bit position into a set of pointers to FRMHdrCache entries
associated with that bit.

Note that in our current implementation, every incomingFRM_GRP_UPDATE trig-
gers a kernel invalidation request even if none of the cachedentries require invalidation. As
a potential optimization, the BGP daemon can keep track of the current content of FRMHdr-
Cache and issue an invalidation call only if the cache is known to contain stale entries. This
would prevent some unnecessary user-kernel crossings, butwould make cache eviction more
expensive because additional coordination between the kernel module and the daemon would
be required to keep the two structures in sync. We believe that both approaches are valid and
come with their trade-offs, which we plan to explore more fully through subsequent deploy-
ment experience.

In our evaluations, the processing overhead for a singleFRM_GRP_UPDATE mes-
sage with one group activation event that modifies 6 bits in the membership bloom filter and
invalidates a single FRMHdrCache entry (with 1,024 entriespresent in the cache) incurs 18.67

43

FRM Border Router
(XORP, Linux)

AS X AS Y VAT Clients (WinXP) VAT Client (WinXP)

FRM Border Router
(XORP, Linux)

Figure 18:FRM deployment set-up.

µsec of processing time. It takes 0.34µsec to updateGRP_BF and 18.33µsec to identify
and invalidate the stale cache entry.

6.3 Deployment Experience

To test the end-to-end functionality of our FRM implementation, we deployed the prototype in
a local testbed consisting of 2 interconnected FRM routers and 3 Windows desktop clients. The
set-up is illustrated in Figure 18. We deployed an unmodifiedversion of the VAT [32] audio
conferencing tool on the client machines and observed packet delivery from the source client to
receivers, demonstrating that our FRM implementation can forward packets end-to-end using
legacy OS and application stacks.

7 Conclusion

In this report, we presented our work on Free Riding Multicast - a different approach to
network-level multicast routing. Our design explores a novel set of tradeoffs, offering a simpler
(no distributed tree computation) and easier-to-configure(no need for rendezvous point) solu-
tion at the expense of reduced bandwidth efficiency and greater resource demands on border
routers - tradeoffs that we believe are worth exploring given current technology trends.

In conclusion, we note that since FRM makes no use of hierarchical address aggregation,
its implementation represents a fairly general abstraction and in effect provides the ability to
route on flat identifiers. Hence, our general scheme could be applied to more general routing
services such as IP-layer anycast or name-based routing. The primary difference is that mul-

44

ticast requires matchingall subscriptions, whereas the above require matchingany. The only
implication to our design is that false positives would be even more undesirable and a simple
solution would be to enumerate subscriptions or use an alternate encoding scheme that admits
only false negatives.

The goal of this project was to tackle a purely technical barrier to inter-domain deployment
of multicast in the Internet, but other barriers do exist. However, given the growing adoption
of Internet broadcasting, multimedia conferencing, massively multiplayer online games, and
other networked applications, we conjecture that time may be right to revisit IP multicast and
re-evaluate its chances.

8 Acknowledgements

The work presented in this report includes contributions from Sylvia Ratnasamy and my advi-
sor, Professor Scott Shenker.

I would like to thank Sylvia for offering me the opportunity to collaborate with her on this
exciting project and for her invaluable guidance, without which the FRM prototype would have
never seen the light of day.

I would like to thank my advisor, Scott, for his valuable suggestions, feedback, and his
generous support.

I also thank the anonymous reviewers of our SIGCOMM submission [28] for their valuable
input and comments that helped improve this work.

45

References

[1] Stephen E. Deering and David R. Cheriton. Multicast Routing in Datagram Internetworks
and Extended LANs.ACM Trans. Comput. Syst., 8(2):85–110, 1990.

[2] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design.ACM
Trans. Comput. Syst., 2(4):277–288, 1984.

[3] Edward Castronova. Network technology, markets, and the growth of synthetic worlds.
In NetGames ’03: Proceedings of the 2nd workshop on Network andsystem support for
games, pages 121–134, New York, NY, USA, 2003. ACM Press.

[4] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. The effect
of latency on user performance in warcraft iii. InNetGames ’03: Proceedings of the 2nd
workshop on Network and system support for games, pages 3–14, New York, NY, USA,
2003. ACM Press.

[5] Internet Television News and Marketplace.http://www.iptv-industry.com/.

[6] Tony Ballardie, Paul Francis, and Jon Crowcroft. Core Based Trees (CBT). InSIG-
COMM, pages 85–95, 1993.

[7] Stephen Deering, Deborah L. Estrin, Dino Farinacci, VanJacobson, Ching-Gung Liu,
and Liming Wei. The PIM Architecture for Wide-Area Multicast Routing. IEEE/ACM
Transactions on Networking, 4(2):153–162, 1996.

[8] Hugh W. Holbrook and David R. Cheriton. IP Multicast Channels: EXPRESS Support
for Large-scale Single-source Applications. InSIGCOMM, pages 65–78, 1999.

[9] Yang-Hua Chu, Sanjay G. Rao, and Hui Zhang. A Case for End System Multicast. In
Measurement and Modeling of Computer Systems, pages 1–12, 2000.

[10] NewArch project: Future-Generation Internet Architecture.http://www.isi.edu/
newarch/.

[11] GENI: Global Environment for Network Innovations.http://www.geni.net.

[12] FIND: Future Internet Network Design.http://find.isi.edu.

[13] Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming the Internet Impasse
Through Virtualization. InProceedings of the 3rd ACM Workshop on Hot Topics in
Networks (HotNets-III), November 2004.

[14] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors.Com-
mun. ACM, 13(7):422–426, 1970.

[15] Yakov Rekhter and Tony Li. RFC 1771 - A Border Gateway Protocol 4 (BGP-4), 1995.
Internet Engineering Task Force, Inter-Domain Routing Working Group.

[16] Marcel Waldvogel, George Varghese, Jon Turner, and Bernhard Plattner. Scalable High
Speed IP Routing Lookups. InSIGCOMM ’97: Proceedings of the ACM SIGCOMM
’97 conference on Applications, technologies, architectures, and protocols for computer
communication, pages 25–36, New York, NY, USA, 1997. ACM Press.

46

[17] Pankaj Gupta. Algorithms for Routing Lookups and Packet Classification, December
2000. PhD thesis, Stanford University, December 2000.

[18] Content Addressable Memory, Cypress Semiconductor.http://www.cypress.
com.

[19] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On Power-law Relation-
ships of the Internet Topology. InSIGCOMM, pages 251–262, 1999.

[20] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford, Aman Shaikh, and
Jacobus van der Merwe. Design and Implementation of a Routing Control Platform. In
Proc. USENIX Symposium on Networked Systems Design and Implementation (NSDI),
May 2005.

[21] Craig Labovitz, Abha Ahuja, Abhijit Bose, and Farnam Jahanian. Delayed Internet Rout-
ing Convergence. InSIGCOMM, pages 175–187, 2000.

[22] Sylvia Ratnasamy, Andrey Ermolinskiy, and Scott Shenker. Revisiting IP Multicast. Intel
Research Technical Report.

[23] Venkata N. Padmanabhan and Lili Qiu. The Content and Access Dynamics of a Busy Web
Site: Findings and Implications. InSIGCOMM ’00: Proceedings of the conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication,
pages 111–123, New York, NY, USA, 2000. ACM Press.

[24] Lakshminarayanan Subramanian, Sharad Agarwal, Jennifer Rexford, and Randy H. Katz.
Characterizing the Internet Hierarchy from Multiple Vantage Points. InProc. of IEEE
INFOCOM 2002, New York, NY, Jun 2002.

[25] Cisco Systems. Access List Configuration in Cisco’s Gigabit Ethernet Interface. (Reports
that GigE module supports up to 256K TCAM entries).

[26] Brad Cain, Steve Deering, Bill Fenner, Isidor Kouvelas, and Ajit Thyagarajan. RFC
3376 - Internet Group Management Protocol, Version 3, 1996.Internet Engineering Task
Force, Inter-Domain Multicast Routing Working Group.

[27] BGP Table Statistics from AS 1221.http://bgp.potaroo.net/as1221/.

[28] Sylvia Ratnasamy, Andrey Ermolinskiy, and Scott Shenker. Revisiting IP Multicast.
SIGCOMM Comput. Commun. Rev., 36(4):15–26, 2006.

[29] C. Jin, Q. Chen, and S. Jamin. Inet: Internet Topology Generator, 2000.

[30] Mark Handley, Eddie Kohler, Atanu Ghosh, Orion Hodson,and Pavlin Radoslavov. De-
signing Extensible IP Router Software. InProceedings of the 2nd USENIX Symposium
on Networked Systems Design and Implementation (NSDI ’05), Boston, MA, USA, May
2005.

[31] Linux man pages: NETLINK(7) .

[32] Van Jacobson and Steven McCanne. Visual Audio Tool.http://ee.lbl.gov/
vat/.

47

