Design and Implementation of a Privacy-Preserving
Database on PDC

Andrey Ermolinskiy

1 Introduction

Regulating access to electronically stored personalmmétion is an increasingly challenging task
and significant concerns about the privacy of personal date kmerged. These concerns are
fueled, in part, by the ever-growing number of highly-pualded security incidents involving data
theft and privacy violations.

As the most recent example, UC Berkeley has discovered dheigh attackers breached the
databases maintained by the University Health Serviceggaimeed unauthorized access to large
volumes of personal data including names, birth dates, anghlssecurity numbers [5]. As a
consequence of this security breach, approximately 16G;00ent and former University students
have been exposed to the risk of identity theft.

One of the defining principles of information privacy is thaion oflimited disclosurewhich
stipulates that individuals and organizations should ltarérol over who is allowed to see their
private information and for what purpose. Such informatmay not be revealed for purposes
other than those for which there is consent from the ownédnefriformation.

The issues of privacy and information disclosure in databbaanagement systems have re-
ceived a significant amount of research attention. In théssof relational databases, the princi-
ple of limited disclosure implies that the personal infotima stored in a database may be revealed
to database users through queries only in accordance wetbrivacy preferences specified by the
owner of this information. These preferences are essnéiaet of rules that describe to whom
data may be disclosedCipient3 and how it may be useg(rposes

[2] proposes re-architecting our database managemernsysb include responsibility for
the privacy of data as a fundamental tenet. This paper egtlihe ten principles foprivacy-
preserving(Hippocratic databases which include, among oth@s;pose specificatigrconsent
andlimited disclosurelIn [4], the authors demonstrate how the limited disclogueciple can be
realized within the confines of a traditional RDBMS architege. In thetable semanticenodel of
limited disclosure, eactPurposeRecipieni pair is conceptually assigned a unique view over the
entire database, in which prohibited attributes are magk#dthe NULL value. To implement
these semantics, the authors propose storing the privaégrpnces (and other policy metadata)
in relational form and modifying incoming queries wiBlASEstatements to enforce the rules and
conditions expressed in the privacy metadata.

While this approach is undoubtedly attractive due to itspdicity and ease of implementa-
tion, a purely database-level solution would only paryiatidress the major security challenges.
An unscrupulous user with administrative privileges casilgalisable or circumvent the query
rewriting mechanisms, for example by reading the raw (wereltl) table contents directly from the
database files in the underlying filesystem. Furthermoeeothput of a query submitted on behalf

1

Privileged VM
Privileged Kernel GuestApp 1| |Guest App 2
I/0 device F_|Securte
drivers llesystem Guest OS Kernel
S3-XEN Register, memory
taint status
Y
Hardware

Figure 1: The high-level organization of PDC.

of an authorized user may get retained and stored in an extienrmat (such as a text file or a
spreadsheet document). In this case, enforcing end-tgevaly guarantees would necessitate
additional application- and format-specific mechanismsagsociating the content of the docu-
ment with sensitive records in the database from which tbrgent was derived, as well as for
enforcing treTrefevamtprivacy pofices:

In this report, we explore an alternate approach that lge=sr¢éhe PDC platform [3] to enforce
policies on private datbhelowthe database, effectively at the hardware level. PDC reliefne-
grained taint tracking to monitor the propagation of sevesilata and enforces policies at the time
of externalization.

The rest of this report is structured as follows. Section @/jales a high-level overview of
the PDC architecture and describes the central tradeddfsidh 3 outlines the general design for
a privacy-preserving relational database atop the PDGoptat Section 4 describes our proof-
of-concept prototype based on Postgres [1] - an open-s®REE&MS implementation. Finally,
Section 5 evaluates our prototype and Section 6 concludes.

2 Overview of PDC
2.1 High-Level Design

Practical Data Confinement (PDC) is a hypervisor-basedopfatthat seeks to provide end-to-
end guarantees of security and the ability to enforce us@ned policies on the movement and
exposure of sensitive data. Our platform can prevent umaiztdd exchanges of data between
pairs of network endpoints or, more broadly, between omgitns or between an individual and
an organization.

Figure 1 illustrates the high-level architecture of PDChiload terms, we interpose a thin func-
tional component between the hardware and the operatingmsgswhich enables us to track the
movement of sensitive data thorough the system and prevantliorized externalization through
I/O devices. PDC’s architecture is similar to hypervisaistsas Xen (and indeed, our current
prototype implementation is based on Xen). The OS and aits with which the user inter-
acts operate within a guest virtual machine (VM). In additeach PDC-enabled machine runs a
minimal privileged operating system, which offers limitsgtvices to the hypervisor and the guest
VMs, including access to 1/0O devices. Our platform is defibgdwo core components:

1. Policy specification Each abstract user-level data object is named with a undgreifier
(denoted byDatalD). These identifiers carry no inherent meaning, but they eptually as-
sociate an object with some category of privacy. Each dgecoD® has anowner(denoted
O.ownern who can specify how the information derived fradcan be handled by attaching
policiesto O. In our current design, a policy is conceptually a 3-dimenal array that asso-
ciates af ALLOW/DENY?} action with 3-tuples of the fornfRecipientPurposeChanne}.
TheChannelcomponent indicates the I/O channel and typically corredpdo an 1/O device
class (e.g., screen, USB-attached storage, printer,Faicjnstance the policy

ALLOW <Al ice, *, <NIC, Screen, Printer>>

on data objecO would permit Alice to receive sensitive data derived franfrom the net-
work and externalize it via her screen and/or her local prinAs another example, a user
can send e-mail to someone and apply a “no-forward” poliaywould prevent the recipient
from sending any e-mail that contains any data derived ftogrsensitive attachment.

2. Fine-grained information flow tracking: The PDC hypervisor implements a fine-grained
instruction-level taint tracking mechanisms, which morstthe flow of sensitive data inside
the guest VM and tracks its movement between registers, memnad local disk with byte-
level granularity. Each byte of physical memory and disk addressable by the guest VM is
conceptually associated withTaintTag which stores a list oDatalDs corresponding to
data objects from which the value bimay have been derived.

When an application opens a file with sensitive content, Rii&Xthe correspondingaintTags

from disk and applies them to memory buffers associated tiv@lopen file. When an appli-
cation touches a piece of physical memory associated witkitbee content, the hypervisor
traps the access (using paging hardware), examines thansiction, and updates the
tainting metadata accordingly.

When the guest VM makes an attempt to generate externadigraable output (e.g., show-
ing data on the screen, writing data to a USB key, sending kepathe hypervisor inspects
the set ofTaint Tag associated with the contents of output buffers and chéeks tor policy
compliance.

2.2 Central Tradeoffs

The architecture described above has several attractypepies. First, since the taint-tracking and
policy enforcement mechanisms reside below the operayisigs), our scheme permits the guest
VM to execute untrusted and possibly malicious code. Funtbee, PDC requires no changes to
existing operating systems and application and thus, facektively low barrier to adoption.

At the same time, our scheme faces several significant clggie First and perhaps most
importantly, fine-grained taint-tracking imposes a coesable performance overhead. To keep
the overhead at a manageable level, we expect to be ableci@agg/two techniques: speculative
execution and parallelized passive taint tracking. Theiksight is that we need access to byte-
level taint information only at the time of externalizatidfience, it is sufficient to asynchronously
track byte-level information flow and allow the guest VM teesplatively execute at native speed.

We also expect to be able to leverage extra computing cgpadilable due to the presence of
multiple CPU cores.

The second hurdle pertains to the storage overhead of puktgdata an@aintTag. As noted
above, our basic unit of granularity for taint tracking posps is a byte - the smallest individually
addressable unit of memory. Conceptually, PDC associales&Tagwith each byte of physical
memory addressable from the guest machine, each byte imtiilaMCPU registers, and each byte
on its virtualized disk. Our current design seeks to ach&lalance between speed (efficiency of
lookups and modifications) and the storage overhead.

2.3 Key Data Structures

2.3.1 Maintaining the memory taint status

PDC uses two distinct data structures to maintain the taatus of 'physical virtual’ memory
seen by the guest VM. For each page of memory, PDC maintainsa 64-bit data structure
(PageTaintSumma)ywhich holds a concise summary of taint labels in the cpwading page.
This data structure enables us to efficiently answer quées the shadow paging code (i.e., “is
pageX tainted with sensitive data?”).

We use a 4-level tree data structure to resolve a 32-bit magtege number into the corre-
spondingPageTaintSummarystance. Each tree node occupies a single memory page (4KB)
non-leaf (index) node stores an array of 32-bit page nunthatgoint to children (1024 items per
node). A leaf tree node stores an arrayPafjeTaintSummarstructures (512 items per node).

The PageTaintSummargata structure, in turn, stores a pointer tgpage taint descriptor
(PageTaintDesqr which enables us to determine thaintTagfor each individual byte in the
corresponding page. These descriptors are representee iof several formats, which trade off
storage overhead and lookup efficiency. These formatsdeclu

1. Uniform format : The page taint descriptor consists of a singentTag This format
enables us to represent uniformly-tainted pages in a spificeent manner.

2. RLE format : The page taint descriptor represents byte-level taintgusin-length encod-
ing (essentially a list ofLength TaintTag pairs). This format is most appropriate for pages
that exhibit a low-to-moderate degree of taint fragmeatatas well as spatial locality.

3. Taint array format : The page taint descriptor holds a fixed-length arrayaihtTag with
one entry for each individual byte within the page. This fatrs suitable for pages that
exhibit a high degree of taint fragmentation.

2.3.2 Maintaining the disk taint status

We have implemented a specialized taint-aware filesystase(bon ext3) that enables us to retain
associations between data regions dathtTag when data objects move between memory and
disk. Analogously to memory region tainting, we maintaiBlackTaintSummargata structure
for each file data block and this data structure, in turn, $i@gointer to @lock taint descrip-

tor (BlockTaintDesc), which enables us to resolve taint values with byte-levahglarity. The
BlockTaintSummarglata structures are maintained as part of filesystem metatste ext3 in-
direct blocks, along with pointers to the correspondingaddbcks. The block taint descriptors
are implemented using the formats introduced above (m@form, RLE, andTaint array) and are

AWN RO

Name Age Address Phone
Alice A. 10 1 April Ave. 111-1111
Bob B.. 20 | 2 Brooks Blvd. | 222-2222

Charles C.| 30 3 Cricket Ct. | 333-3333
David D. | 40 | 4 Dogwood Dr.| 444-4444

Table 1: Complete data table of patient information.

ID | D_ID | D_Name| D_Age | D_Address| D_Phone
1 yes yes yes yes yes

2 yes yes no yes yes

3 yes no no no yes

4 yes yes no no no

Table 2: Patients’ information disclosure preferences Racipient= Charity, Purpose=
Solicitation

maintained on a separate block device or a separate diskgarThe taint-aware filesystem is de-
ployed in the privileged virtualization domain and has dir@ccess to local storage device(s). The
guest (unprivileged) VM communicates with the taint-awhlesystem using the NFS protocol
and a shared memory ring transport.

3 Design of a Privacy-Preserving Database

In this section, we present the high-level design for a pyvareserving database that leverages
the PDC platform. In this design, PDC is responsible foristpand evaluating the disclosure
policies associated with sensitive database records. &auditive attribute value corresponds to
an PDCdata objectand is assigned a uniqatal D by its owner.

We begin by formalizing and illustrating the semantics afited disclosure that we wish to
provide. Subsection 3.2 discusses the mechanisms for dyeaed policy specification. Finally,
Subsection 3.3 describes query evaluation.

3.1 Model of Limited Disclosure

Our design implements thiable semanticenodel of cell-level limited disclosure enforcement, as
defined in [4]. In this model, eactiPurposeRecipieni pair is conceptually assigned a view over
each data table based on the disclosure constraints sgduyfigrivacy preferences. These views
combine to produce a coherent version of the original datb@ eachPurposeRecipieni pair,
whereby prohibited attributes are masked using the NULue&aWe refer the reader to [4] for a
formal specification.

To illustrate this definition, consider Table 1, which shawisypothetical patient information

ID Name Age Address Phone
1 | Alice A 10 1 April Ave. | 111-1111
2 | BobB.. | NULL | 2BrooksBlvd.| 222-2222
3 NULL | NULL NULL 333-3333
4 | David D. | NULL NULL NULL

Table 3: Privacy-preserving version of the patient infatioratable.

dataset in a hospital database. Table 2 lists the patiedmbgtes for disclosure of private informa-
tion to charities for solicitation purposes. The conteritths table indicate that Alice has agreed
to disclose every attribute of her record, Bob has chosernstdase every attribute with the ex-
ception of his age, and so forth. Table 3 shows the privaeggwing patient dataset according to
table semantics that results when the privacy preferermeeapplied to the original data in Table
1.

3.2 Data Insertion

When a new record with sensitive attributes is insertedardatabase, we must tag the appropriate
locations in memory and on disk (holding the sensitive latite values) with the corresponding
DatalDs. (As we explain in Section 2, these identifiers establisfasociation between a sensitive
data item and an externalization policy).

In the typical mode of operation, the memory buffer holdihg tontents of an SQL INSERT
statement would already be tainted with the corresponDaigl Ds at the time of its arrival to the
database backend process. The initial tainting occurs tippantry of sensitive information into
the system from a user-facing input device (such as a kegpokor instance, during the patient
registration process, the new patient would be asked to éeteinformation into an electronic
registration form. As the patient proceeds with the regt&in, she would indicate the attribute
sensitivity identifiers via the PDC hypervisor (i.&he data | am about to enter via the keyboard
constitutes my home address. This data object should beekhkéth the MyAddress identifie)”

The taint-tracking mechanisms in PDC assume the respditysibr propagating these tags into
the body of an SQL INSERT statement. During the executiorhisf $tatement by the database
backend process, the sensitive attribute values (and SuziasedDatalDs) propagate through
the various implementation-specific data structures aedterally make their way into the buffer
cache and persistent data structures on disk (e.g., relad¢iap pages, index pages, the write-ahead
log).

It is important to note that in the above scheme, the propagaf sensitivity identifiers into
persistent DBMS-level data structures occurs without amglvement from the database backend
process and is handled entirely by the PDC hypervisor.

Another approach, which we found useful for testing and dging, involves extending the
SQL language syntax in a manner that enables databasesdlieatplicitly annotate the body of
an INSERT statement with PDC data identifiers, for examplelésys:

| NSERT | NTO Patients VALUES (1 {Alicel D},
"Alice’ {Al'i ceNane},
20 {Al'i ceAge},
"1 April Ave.’ {AliceAddress},
"111-1117 {Al'i cePhone}
);

In this scheme, the database backend process is respoiusitdgging the memory regions
holding sensitive attribute values with the corresponddagial Ds during the query parsing stage.

3.3 Query Evaluation

Recall that the table semantics model of limited disclosm®rcement requires the database to
expose an alternate view of each data table to éBahposeRecipienj pair, in which disallowed

6

attribute values are replaced with a NULL value. These séigsnan be implemented via a
conceptually straightforward extension to the query etieaengine. More concretely, we modify
the scan operators at the leaves of the execution plan tgeegSequentialHeapScaimdexScan...)

, Which are responsible for scanning input relations ang'nétg a stream of raw tuples. Assuming
that these operators expose the conventigeedtor interface, we modify theiGetNext()method

to perform the filtering of prohibited attribute values prio returning a tuple. For each potentially
sensitive attribut@,, the operator determines the virtual address of the menegipm holding its
value (typically a pointer into the buffer cache or one of élogiliary data structures) and issues a
request to PDC to obtain theaintTagassociated with that memory address. Another request to
PDC resolves th&aintTaginto aDatalD and the associated externalization policy specified by
the owner ofA. We evaluate this policy for thecipient(on whose behalf the query was issued)
and the intendegdurpose(as specified by the recipient). If the policy prohibits raeg the value

of A to the specified recipient and for the specified purpose, wekrttee contents of with a
NULL value prior to returning the tuple.

It is crucial to note that while our design requires augmenthe database engine with the at-
tribute filtering mechanism described above, the respditgifor actually enforcing policy com-
pliance remains with the PDC hypervisor. The scan opergteesy the PDC platform to determine
which of the attributes in the next tupheustbe filtered out in order to be permitted to externalize
the query output. In the event that the database processdagsue the appropriate set of calls to
PDC or fails to correctly replace the prohibited attribusédue in its memory buffers with NULL,
the hypervisor would detect tainted data in the output aedlpde the guest VM from exposing it.

4 Implementation

We have implemented a proof-of-concept prototype baseldeogen-source Postgres [1] database
engine and in this section, we briefly describe our modificetiand extensions to Postgres. It is
important to note that some of the central elements of the Ri2@itecture are still under active
development and a fully-featured platform capable of rograrbitrary guest applications is not
yet available. Our current prototype runs on top of a paR@C implementation, which includes
the following elements:

» The taint-aware filesystem (s3ext3), which keeps traclaimit information in data files on
disk.

» The memory taint management module, which keeps trackimfitsformation in memory
pages using the tree data structure described in Section 3.

An important feature still missing from our partial PDC ptytpe is the ability to emulate guest
instructions and track the propagation of taints betweemang locations and CPU registers.
For the purposes of this project, we devised a workarounatisol which aims to simulate this
functionality: we intercept all calls to library functiortisat manipulate the contents of memory
buffers (e.g., routines such aeemsegt) andmemcpy)), examine their arguments, and manually
update the memory taint data structures to reflect the sftfathese memory manipulations. As
a consequence, the evaluation results presented in tlosving section do not fully reflect the
performance overhead of instruction-level taint trackimat will be observed when we deploy our
privacy-preserving Postgres prototype on top of the fédiyetional PDC platform.

Recipient and purpose specification: We extended the frontend/backend Postgres protocol, as
well as the frontend tools, to provide support for purposjzation. Database users are required
to specify the purpose on a per-session basis using a cominamtrgument, e.g.:

> psqgl -U accounting --purpose billing

In our current implementation, the notion ofexcipientis synonymous with a Postgres user ac-
count, which enables us to leverage existing mechanismsstarspecification and authentication.

Data insertion: We extended the SQL language grammar and the Postgres paesaranner
that enables users to annotate constant elements WAhE E Sclause of aHNSERTstatement
with PDCDatalDs. These identifiers are specified in curly braces followiregactual values and
the full set of grammar extensions is provided in Appendix A.

Query evaluation: As we described in the previous section, enforcing the tedateantics model
of limited disclosure requires extending the leaf opematbat return raw tuples from input rela-
tions. Prior to returning or operating on the contents ofdetthe operator calls the PDC runtime
library to determine th@ aintTagfor each of the attributes and the associated policy. Weueval
ate these policies with respect to the session’s reciprthtpairpose and replace the contents of
prohibited attributes with NULL values.

A sample code fragment, which illustrates the requisiteofehanges tslot_ deform tuple
(a function invoked during sequential relation scans) mashin Appendix B. Similar changes
were made theap deform tuple index getattr, hash next and bt nextto support access via
B-Tree and hash-based indices. Our prototype does not geidgrsupport for the GiST and GIN
index types.

5 Preliminary Evaluation

In this section, we present the results of our preliminarygvenance study. The primary objective
of these experiments is to determine the magnitude of thfenpeance overhead associated with
policy enforcement. We measure the query execution time fmodified Postgres backend that
implements PDC-driven policy enforcement, as describe8dation 4. There are two obvious
points of comparison:

1. An unmodified Postgres backend, which executes querexdernalizes results without
regard for privacy policies.

2. A modified Postgres backend, which implements the talteaaéics model of limited dis-
closure using query modification mechanisms, as describédli

5.1 Experimental Setup

We measure the performance of our Postgres-based protasipg a synthetically generated
dataset, whose parameters are reported in Tables 4 and 5dafaset consists of two tables
(DataTabld andDataTable&) with 10 and 2 attributes, respectivelyataTabld.IntAttrl serves
as a foreign key int®ataTabl@ and we construct a B-Tree index DataTable.IntAttrl.

We generate two sets of privacy policies on the content®aifiTablé for a hypothetical
(PurposeRecipienj pair with the parameters shown in TabldR®licySet corresponds to the sce-
nario of full disclosure, whereby every attribute of evezgard is revealed. In contragiplicySep

8

Attribute Type Contents
Id INT Unique values in sequential order
IntAttrl INT Uniform random values chosen froj— 999
IntAttr2 INT Uniform random values chosen frg@— 99
IntAttr3 INT Uniform random values chosen froj®— 9]
StrAttrl | VARCHAR(40) Random 40-byte text string
StrAttr2 | VARCHAR(40) Random 40-byte text string
StrAttr3 | VARCHAR(40) Random 40-byte text string
BoolAttrl BOOL Random boolean value, 10%TRUE
BoolAttr2 BOOL Random boolean value, 50%TRUE
BoolAttr3 BOOL Random boolean value, 90%4TRUE

Table 4: Components of the benchmark dataBataTabld schema.

Attribute Type Contents
IntAttrl INT Unique values fronj0 — 999 in sequential orde
StrAttrl | VARCHAR(40) Random 40-byte text string

Table 5: Components of the benchmark dataBataTabl€ schema.

represents a much more restrictive privacy configuratiowtich the value of a particular attribute

is revealed for only a fraction of records.
Our initial evaluation efforts focus on measuring the cdsb@cuting the following queries:

QL: SELECT * FROM Dat aTabl el;

Q: SELECT Dat aTabl el.ld, DataTable2.StrAttril
FROM Dat aTabl el, Dat aTabl e2
VWHERE Dat aTablel.IntAttr1l = DataTable2. I ntAttr1;

Q1 simply returns the full contents @fataTabléel, subject to partial filtering in accordance
with the privacy preferences. Q2 is a somewhat more complexygwhich exercises projection
and join facilities. We explore the scalability charactgds by running these queries on three dis-
tinct instances oDataTablé., which contain 10000, 100000, and 500000 records, whipike
the contents oDataTable& fixed.

Our experiments were run on a desktop-grade machine pasgesguad-core AMD Phenom
1.2Ghz processor, three GB of memory, and one ATA hard dr. system ran Linux Fedora
Core 9 with kernel version 2.6.24-14. Unless otherwiseedtadll Postgres configuration param-
eters were left at their default values. We measure the gewygution time using the standard
timeLinux system utility and report the average over 5 iteragiorhe standard deviation does not
exceed 8% of the reported mean value in any of the experiméfaslear out the Postgres buffer
cache and the Linux page cache after each iteration.

5.2 Experimental Results

Figures 2(a) and 2(b) report the average query responsédir@d with PolicySel andPolicySegp,
respectively. In these figuresp enforcementlenotes the behavior of the standard Postgres im-
plementation that does not interact with PDC and extereslguery results without accounting
for privacy preferencesDatabase-level enforcemedénotes the strategy of enforcing disclosure
policies using a database-level mechanism analogous néheresented in [4]. In this scheme,

9

Option PolicySet1 PolicySet2
Reveal ID? YES YES for 50% of recordg
Reveal IntAttr1? YES YES for 1% of records
Reveal IntAttr2? YES YES for 5% of records
Reveal IntAttr3? YES YES for 10% of recordg

Reveal StrAttrl1? YES NO
Reveal StrAttr2? YES Yes for 50% of records
Reveal StrAttr3? YES YES

Reveal BoolAttrl? YES Yes for 10% of records
Reveal BoolAttr2? YES Yes for 50% of records
Reveal BoolAttr3? YES Yes for 90% of records

Table 6: Privacy policies on the contentsidtaTablel.

the privacy preferences for the contentPataTable are explicitly maintained in relational form
(i.e., tablesPolicySel andPolicySeR)!. Incoming queries are modified to perform lookups in the
privacy preferences table and selectively filter out priteéibvalues using the CASE statement.
For instance, Q1 (a simple query that returns all record3ataTabld) would be rewritten for
PolicySet as follows in this schene

CREATE VI EW Pol i cySet 1Vi ew AS
SELECT
CASE WHEN EXI STS
(SELECT reveal |Id FROM PolicySet1
WHERE Pol i cySet1.1d = DataTablel.ld
AND Pol i cySetl.reveal Id = TRUE)
THEN Id ELSE NULL END AS id ,
CASE VWHEN EXI STS
(SELECT reveal IntAttrl FROM PolicySet1
WHERE Pol i cySet1.1d = DataTablel.ld
and PolicySetl.reveal IntAttrl = TRUE)
THEN IntAttrl ELSE NULL END AS IntAttrl ,

FROM Dat aTabl el;

SELECT * FROM Pol i cySet 1Vi ew;

Finally, PDC enforcementepresents the PDC-driven scheme, which relies on a modibett
gres implementation and the mechanisms presented in 8ecB@and 4.

We observe a significant (and expected) increase in queppmnes time for both privacy en-
forcement schemes, but the modified Postgres implementii leverages the PDC platform for
policy storage and enforcement offers competitive peréorce.

Figures 3(a) and 3(b) show the response times for Q2RatltySefll andPolicySeR, respec-
tively. This query joindDataTabld with DataTabl& onlntAttrl and projects a pair of attributes.
Analogously to the previous result, enforcing privacy p@s$ incurs a noticeable performance
penalty and the database-level scheme appears to outpetferPDC-driven design by a signifi-
cant margin. We are currently investigating the likely @susf this performance discrepancy.

IFor efficiency, we constructed a B-Tree index onlitidield for both policy relations.
2Defining a view simplifies presentation, but is not strictgcassary.

10

Elapsed time (seconds)

35

30

25

20

15

10

T
No enforcement
Database-level enforcement
PDC enforcement

10000
Number of records in DataTablel

100000 500000

(a) Query response time witPolicySetl.

Elapsed time (seconds)

35

T
No enforcement
Database-level enforcement
PDC enforcement

10000 100000 500000
Number of records in DataTablel

(b) Query response time witPolicySep.

Figure 2: Performance and scalability results for Q1 - a mpery that returns the full contents
of DataTabld.

16

T
No enforcement —

Elapsed time (seconds)

14 |

12

10

Database-level enforcement ===
PDC enforcement

10000
Number of records in DataTablel

(a) Query response time witPolicySetl.

100000 500000

Elapsed time (seconds)

2o
SIS

O B N W » O O N O ©

T
No enforcement —

B Database-level enforcement === 7
PDC enforcement

10000
Number of records in DataTablel

(b) Query response time witPolicySep.

100000 500000

Figure 3: Performance and scalability results for Q2. Thigryg joins DataTabld and
DataTabl€ onIntAttrl and projects two of the resulting attributes.

6 Summary and Future Work

Information privacy is an increasingly growing concern &ganizations that collect and main-
tain large amounts of personal data. In this report, we ptesean initial design for a privacy-
preserving relational database that provides the tablessees model of limited disclosure. Our
approach is influenced to a significant extent by earlier i@y4], but relies on the PDC platform
for the storage and enforcement of privacy policies. We areeatly implementing the remain-
ing components of PDC and making improvements to our Pastggeed prototype. Future work
will include conducting an extensive performance eva@ratn top of the fully-functional PDC

platform.

References

[1] Postgreshtt p: //wwv. post gresql . org.
[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippoccatiatabases. MLDB, 2002.

11

[3] S. Katti, A. Ermolinskiy, M. Casado, S. Shenker, and Hla&aishnan. S3: Securing sensitive stuff. WSENIX
OSDI Work-in-Progress (WiP) repqr2008.

[4] K. Lefevre, R. Agrawal, V. Ercegovac, R. RamakrishnanXif, and D. DeWitt. Limiting disclosure in hippocratic
databases. INLDB, 2004.

[5] M. Meyers. UC Berkeley computers hacked, 160,000 at. riskt p: / / news. cnet . com 8301- 1009 _
3-10236793-83. ht m ", 2009.

12

APPENDIX

A SQL Grammar Extensions

Below, we list our extensions to the SQL language grammdin(gle:insrc/backend/parser/gram.y
The apparent complexity is due to the fact that the annotatesion of the VALUES clause is
meaningfulonly in the context of an INSERT statement and should not be allaweappear in
other cases permitted by the original grammar (e.g., inrSelectStmt

i nsert _rest:
tai nted val ues_cl ause:

{
$$ = makeNode(InsertStnt);
$$->cols = NIL;
$$->sel ect Stnt = $1;
}
| (" insert_colum_list ')’ tainted val ues_cl ause
{
$$ = makeNode(InsertStnt);
$$->col s = $2;
$$- >sel ect Stnt = $4;
}
| Sel ect St nt NoVal ues
{
$$ = makeNode(InsertStnt);
$$->cols = N L;
$$->select Stnt = $1;
}
| (" insert_colum_list ')’ SelectStntNoVal ues
{
$$ = makeNode(InsertStnt);
$$->col s = $2;
$$- >select Stnt = $4;
}
| DEFAULT VALUES
{
$$ = makeNode(InsertStnt);
$$->cols = NI L;
$$- >sel ect Stnt = NULL;
}

tai nted val ues_cl ause:
VALUES tai nted ctext row

{
SelectStm *n = nmakeNode(Sel ectStnt);
n->val uesLi sts = |ist_makel($2);
$$ = (Node *) n;
}
| tainted_values_clause ',’ tainted_ctext_row
{

SelectStnt *n = (SelectStnt) $1;

13

n- >val uesLi sts = | append(n->val uesLi sts, $3);
$$ = (Node *) n;

tainted _ctext _row ' (’ tainted ctext_expr_ list ’)’ { $%

$2; }

tainted ctext_expr_list:

tai nted_ctext _expr { $$ = list_nakel($1); }

| tainted ctext_expr_list ',’ tainted_ctext_expr { $$ = | append($1, $3); }
tai nt_| abel: "{’ lconst '}’

{

Tai nt Label =1 = makeNode(Tai nt Label);
| ->l abel = (Node *)nmakel nt eger ($2);
$$ = (Node *)1;

}

tai nted_ctext_expr:
a_expr { $% = (Node *) $1; }
| a_expr taint_|abel
{
Tai nted_A Expr *e = nakeNode(Tai nted_A Expr);
e->a_expr = $1;
e->taint = $2;
$$ = (Node *)e;
}
| DEFAULT { $$ = (Node) nmakeNode(Set ToDefault); }

Sel ect St nt NoVal ues: sel ect_no_val ues_no_parens %rec UM NUS
| select _no_values_w th_parens %rec UM NUS

sel ect _no_val ues_wi t h_parens:
"(' select_no_values no_parens ')’ {
| *(select_no _values with parens ')’ { $$

sel ect _no_val ues_no_parens:

si npl e_sel ect _no_val ues { $$ = 81, }
| select _clause no_val ues sort_cl ause
{
i nsert Sel ect Options((SelectStnt =) $1, $2, NL,
NULL, NULL);
$$ = $1;
}
| select clause no_val ues opt_sort _clause for | ocking clause opt_select limt
{

i nsert Sel ect Options((SelectStnmt =) $1, $2, $3,
list_nth($4, 0), list_nth($4, 1));

14

$$ = $1;

}
| select _clause no_values opt_sort_clause select linmt opt_for | ocking clause
{
insertSel ectOptions((SelectStnt *) $1, $2, $4,
list_nth($3, 0), list_nth($3, 1));
$$ = $1;
}

sel ect _cl ause_no_val ues:
si npl e_sel ect _no_val ues { $%
| select_no values with_parens { $$

(T
@
=F

-

si mpl e_sel ect _no_val ues:
SELECT opt _distinct target_|ist
into_clause fromcl ause where_cl ause
group_cl ause havi ng_cl ause

{
SelectStm *n = nmakeNode(Sel ectStnt);
n- >di stinct C ause = $2;
n- >t arget Li st = $3;
n->i nt oCl ause = $4;
n->fronCl ause = $5;
n- >wher eC ause = $6;
n->gr oupd ause = $7;
n->havi ngd ause = $8;
$$ = (Node *)n;
}
| select_clause _no_values UNION opt_all sel ect_cl ause
{
$$ = nmakeSet Op(SETOP_UNI ON, $3, $1, $4);
}
| select clause no_val ues | NTERSECT opt all sel ect _cl ause
{
$$ = makeSet Op(SETOP_I NTERSECT, $3, $1, $4);
}
| select clause no_val ues EXCEPT opt _all select_cl ause
{
$$ = makeSet Op(SETOP_EXCEPT, $3, $1, $4);
}

B Masking Prohibited Values

/* slot_deformtuple
* G ven a Tupl eTabl eSl ot, extract data fromthe slot’s physical tuple
* into its Datunfisnull arrays. =*/
static void slot_deformtuple(Tupl eTableSlot =+slot, int natts) {
HeapTupl e tuple = slot->tts_tuple;
Dat um *val ues = slot->tts_val ues;
bool *isnull = slot->tts_isnull
Tupl eDesc tupl eDesc = slot->tts_tupl eDescriptor

15

Form pg_attribute »att = tupl eDesc->attrs;
HeapTupl eHeader tup = tuple->t_data;

s3 tainttag t attr_tainttag;

s3 policy t attr_policy;

bool all ow,

tp = (char *) tup + tup->t_hoff;

for (; attnum< natts; attnum+) {
Form pg_ attribute thisatt = att[attnun;

s3 get _vaddr _tainttag(tp + off, &attr_tainttag);
s3 get tainttag policy(&ttr _tainttag, &attr_policy);

all ow = s3 eval uate_policy(&attr_policy,
Get Sessi onPur pose(),
Get Sessi onReci pi ent (),
Get Sessi onChannel ());

if (allow ({

val ues[att num fetchatt(thisatt, tp + off);

i snull[attnum fal se;

} else {
val ues[attnum = (DatumO;
isnull[attnum = true;

sl ow = true;

off = att_addl ength_pointer(off, thisatt->attlen, tp + off);

16

