
Design and Implementation of a Privacy-Preserving
Database on PDC

Andrey Ermolinskiy

1 Introduction
Regulating access to electronically stored personal information is an increasingly challenging task
and significant concerns about the privacy of personal data have emerged. These concerns are
fueled, in part, by the ever-growing number of highly-publicized security incidents involving data
theft and privacy violations.

As the most recent example, UC Berkeley has discovered that foreign attackers breached the
databases maintained by the University Health Services andgained unauthorized access to large
volumes of personal data including names, birth dates, and social security numbers [5]. As a
consequence of this security breach, approximately 160,000 current and former University students
have been exposed to the risk of identity theft.

One of the defining principles of information privacy is the notion of limited disclosure, which
stipulates that individuals and organizations should havecontrol over who is allowed to see their
private information and for what purpose. Such informationmay not be revealed for purposes
other than those for which there is consent from the owner of the information.

The issues of privacy and information disclosure in database management systems have re-
ceived a significant amount of research attention. In the context of relational databases, the princi-
ple of limited disclosure implies that the personal information stored in a database may be revealed
to database users through queries only in accordance with the privacy preferences specified by the
owner of this information. These preferences are essentially a set of rules that describe to whom
data may be disclosed (recipients) and how it may be used (purposes).

[2] proposes re-architecting our database management systems to include responsibility for
the privacy of data as a fundamental tenet. This paper outlines the ten principles forprivacy-
preserving(Hippocratic) databases which include, among others,purpose specification, consent,
andlimited disclosure. In [4], the authors demonstrate how the limited disclosureprinciple can be
realized within the confines of a traditional RDBMS architecture. In thetable semanticsmodel of
limited disclosure, each〈Purpose,Recipient〉 pair is conceptually assigned a unique view over the
entire database, in which prohibited attributes are maskedwith the NULL value. To implement
these semantics, the authors propose storing the privacy preferences (and other policy metadata)
in relational form and modifying incoming queries withCASEstatements to enforce the rules and
conditions expressed in the privacy metadata.

While this approach is undoubtedly attractive due to its simplicity and ease of implementa-
tion, a purely database-level solution would only partially address the major security challenges.
An unscrupulous user with administrative privileges can easily disable or circumvent the query
rewriting mechanisms, for example by reading the raw (unfiltered) table contents directly from the
database files in the underlying filesystem. Furthermore, the output of a query submitted on behalf

1

S3-XEN

Hardware

Guest OS Kernel

Privileged VM

Guest App 2Privileged Kernel

I/O device
drivers

Guest App 1

Secure
Filesystem

Register, memory
taint status

Figure 1: The high-level organization of PDC.

of an authorized user may get retained and stored in an external format (such as a text file or a
spreadsheet document). In this case, enforcing end-to-endprivacy guarantees would necessitate
additional application- and format-specific mechanisms for associating the content of the docu-
ment with sensitive records in the database from which this content was derived, as well as for
enforcing the relevant privacy policies.

In this report, we explore an alternate approach that leverages the PDC platform [3] to enforce
policies on private databelowthe database, effectively at the hardware level. PDC relieson fine-
grained taint tracking to monitor the propagation of sensitive data and enforces policies at the time
of externalization.

The rest of this report is structured as follows. Section 2 provides a high-level overview of
the PDC architecture and describes the central tradeoffs. Section 3 outlines the general design for
a privacy-preserving relational database atop the PDC platform. Section 4 describes our proof-
of-concept prototype based on Postgres [1] - an open-sourceRDBMS implementation. Finally,
Section 5 evaluates our prototype and Section 6 concludes.

2 Overview of PDC

2.1 High-Level Design
Practical Data Confinement (PDC) is a hypervisor-based platform that seeks to provide end-to-
end guarantees of security and the ability to enforce user-defined policies on the movement and
exposure of sensitive data. Our platform can prevent unauthorized exchanges of data between
pairs of network endpoints or, more broadly, between organizations or between an individual and
an organization.

Figure 1 illustrates the high-level architecture of PDC. Inbroad terms, we interpose a thin func-
tional component between the hardware and the operating systems, which enables us to track the
movement of sensitive data thorough the system and prevent unauthorized externalization through
I/O devices. PDC’s architecture is similar to hypervisors such as Xen (and indeed, our current
prototype implementation is based on Xen). The OS and applications with which the user inter-
acts operate within a guest virtual machine (VM). In addition each PDC-enabled machine runs a
minimal privileged operating system, which offers limitedservices to the hypervisor and the guest
VMs, including access to I/O devices. Our platform is definedby two core components:

2

1. Policy specification: Each abstract user-level data object is named with a uniqueidentifier
(denoted byDataID). These identifiers carry no inherent meaning, but they conceptually as-
sociate an object with some category of privacy. Each data object O has anowner(denoted
O.owner) who can specify how the information derived fromO can be handled by attaching
policiesto O. In our current design, a policy is conceptually a 3-dimensional array that asso-
ciates an{ALLOW/DENY} action with 3-tuples of the form〈Recipient,Purpose,Channel〉.
TheChannelcomponent indicates the I/O channel and typically corresponds to an I/O device
class (e.g., screen, USB-attached storage, printer, etc).For instance the policy

ALLOW <Alice, *, <NIC, Screen, Printer>>

on data objectO would permit Alice to receive sensitive data derived fromO from the net-
work and externalize it via her screen and/or her local printer. As another example, a user
can send e-mail to someone and apply a “no-forward” policy that would prevent the recipient
from sending any e-mail that contains any data derived from the sensitive attachment.

2. Fine-grained information flow tracking : The PDC hypervisor implements a fine-grained
instruction-level taint tracking mechanisms, which monitors the flow of sensitive data inside
the guest VM and tracks its movement between registers, memory, and local disk with byte-
level granularity. Each byteb of physical memory and disk addressable by the guest VM is
conceptually associated with aTaintTag, which stores a list ofDataIDs corresponding to
data objects from which the value ofb may have been derived.

When an application opens a file with sensitive content, PDC lifts the correspondingTaintTags
from disk and applies them to memory buffers associated withthe open file. When an appli-
cation touches a piece of physical memory associated with sensitive content, the hypervisor
traps the access (using paging hardware), examines the nextinstruction, and updates the
tainting metadata accordingly.

When the guest VM makes an attempt to generate externally-observable output (e.g., show-
ing data on the screen, writing data to a USB key, sending a packet), the hypervisor inspects
the set ofTaintTags associated with the contents of output buffers and checks them for policy
compliance.

2.2 Central Tradeoffs
The architecture described above has several attractive properties. First, since the taint-tracking and
policy enforcement mechanisms reside below the operating system, our scheme permits the guest
VM to execute untrusted and possibly malicious code. Furthermore, PDC requires no changes to
existing operating systems and application and thus, facesa relatively low barrier to adoption.

At the same time, our scheme faces several significant challenges. First and perhaps most
importantly, fine-grained taint-tracking imposes a considerable performance overhead. To keep
the overhead at a manageable level, we expect to be able to leverage two techniques: speculative
execution and parallelized passive taint tracking. The keyinsight is that we need access to byte-
level taint information only at the time of externalization. Hence, it is sufficient to asynchronously
track byte-level information flow and allow the guest VM to speculatively execute at native speed.

3

We also expect to be able to leverage extra computing capacity available due to the presence of
multiple CPU cores.

The second hurdle pertains to the storage overhead of policymetadata andTaintTags. As noted
above, our basic unit of granularity for taint tracking purposes is a byte - the smallest individually
addressable unit of memory. Conceptually, PDC associates aTaintTagwith each byte of physical
memory addressable from the guest machine, each byte in its virtual CPU registers, and each byte
on its virtualized disk. Our current design seeks to achievea balance between speed (efficiency of
lookups and modifications) and the storage overhead.

2.3 Key Data Structures

2.3.1 Maintaining the memory taint status

PDC uses two distinct data structures to maintain the taint status of ’physical virtual’ memory
seen by the guest VM. For each page of memory, PDC maintains a small 64-bit data structure
(PageTaintSummary), which holds a concise summary of taint labels in the corresponding page.
This data structure enables us to efficiently answer queriesfrom the shadow paging code (i.e., “is
pageX tainted with sensitive data?”).

We use a 4-level tree data structure to resolve a 32-bit machine page number into the corre-
spondingPageTaintSummaryinstance. Each tree node occupies a single memory page (4KB). A
non-leaf (index) node stores an array of 32-bit page numbersthat point to children (1024 items per
node). A leaf tree node stores an array ofPageTaintSummarystructures (512 items per node).

The PageTaintSummarydata structure, in turn, stores a pointer to apage taint descriptor
(PageTaintDescr), which enables us to determine theTaintTagfor each individual byte in the
corresponding page. These descriptors are represented in one of several formats, which trade off
storage overhead and lookup efficiency. These formats include:

1. Uniform format : The page taint descriptor consists of a singleTaintTag. This format
enables us to represent uniformly-tainted pages in a space-efficient manner.

2. RLE format : The page taint descriptor represents byte-level taints using run-length encod-
ing (essentially a list of〈Length,TaintTag〉 pairs). This format is most appropriate for pages
that exhibit a low-to-moderate degree of taint fragmentation, as well as spatial locality.

3. Taint array format : The page taint descriptor holds a fixed-length array ofTaintTags with
one entry for each individual byte within the page. This format is suitable for pages that
exhibit a high degree of taint fragmentation.

2.3.2 Maintaining the disk taint status

We have implemented a specialized taint-aware filesystem (based on ext3) that enables us to retain
associations between data regions andTaintTags when data objects move between memory and
disk. Analogously to memory region tainting, we maintain aBlockTaintSummarydata structure
for each file data block and this data structure, in turn, holds a pointer to ablock taint descrip-
tor (BlockTaintDescr), which enables us to resolve taint values with byte-level granularity. The
BlockTaintSummarydata structures are maintained as part of filesystem metadata inside ext3 in-
direct blocks, along with pointers to the corresponding data blocks. The block taint descriptors
are implemented using the formats introduced above (i.e.,Uniform, RLE, andTaint array) and are

4

ID Name Age Address Phone
1 Alice A. 10 1 April Ave. 111-1111
2 Bob B.. 20 2 Brooks Blvd. 222-2222
3 Charles C. 30 3 Cricket Ct. 333-3333
4 David D. 40 4 Dogwood Dr. 444-4444

Table 1: Complete data table of patient information.

ID D_ID D_Name D_Age D_Address D_Phone
1 yes yes yes yes yes
2 yes yes no yes yes
3 yes no no no yes
4 yes yes no no no

Table 2: Patients’ information disclosure preferences forRecipient= Charity, Purpose=
Solicitation.

maintained on a separate block device or a separate disk partition. The taint-aware filesystem is de-
ployed in the privileged virtualization domain and has direct access to local storage device(s). The
guest (unprivileged) VM communicates with the taint-awarefilesystem using the NFS protocol
and a shared memory ring transport.

3 Design of a Privacy-Preserving Database
In this section, we present the high-level design for a privacy-preserving database that leverages
the PDC platform. In this design, PDC is responsible for storing and evaluating the disclosure
policies associated with sensitive database records. Eachsensitive attribute value corresponds to
an PDCdata objectand is assigned a uniqueDataID by its owner.

We begin by formalizing and illustrating the semantics of limited disclosure that we wish to
provide. Subsection 3.2 discusses the mechanisms for data entry and policy specification. Finally,
Subsection 3.3 describes query evaluation.

3.1 Model of Limited Disclosure
Our design implements thetable semanticsmodel of cell-level limited disclosure enforcement, as
defined in [4]. In this model, each〈Purpose,Recipient〉 pair is conceptually assigned a view over
each data table based on the disclosure constraints specified by privacy preferences. These views
combine to produce a coherent version of the original database for each〈Purpose,Recipient〉 pair,
whereby prohibited attributes are masked using the NULL value. We refer the reader to [4] for a
formal specification.

To illustrate this definition, consider Table 1, which showsa hypothetical patient information

ID Name Age Address Phone
1 Alice A. 10 1 April Ave. 111-1111
2 Bob B.. NULL 2 Brooks Blvd. 222-2222
3 NULL NULL NULL 333-3333
4 David D. NULL NULL NULL

Table 3: Privacy-preserving version of the patient information table.

5

dataset in a hospital database. Table 2 lists the patients’ choices for disclosure of private informa-
tion to charities for solicitation purposes. The contents of this table indicate that Alice has agreed
to disclose every attribute of her record, Bob has chosen to disclose every attribute with the ex-
ception of his age, and so forth. Table 3 shows the privacy-preserving patient dataset according to
table semantics that results when the privacy preferences are applied to the original data in Table
1.

3.2 Data Insertion
When a new record with sensitive attributes is inserted intoa database, we must tag the appropriate
locations in memory and on disk (holding the sensitive attribute values) with the corresponding
DataIDs. (As we explain in Section 2, these identifiers establish the association between a sensitive
data item and an externalization policy).

In the typical mode of operation, the memory buffer holding the contents of an SQL INSERT
statement would already be tainted with the correspondingDataIDs at the time of its arrival to the
database backend process. The initial tainting occurs uponthe entry of sensitive information into
the system from a user-facing input device (such as a keyboard). For instance, during the patient
registration process, the new patient would be asked to enter her information into an electronic
registration form. As the patient proceeds with the registration, she would indicate the attribute
sensitivity identifiers via the PDC hypervisor (i.e.,“the data I am about to enter via the keyboard
constitutes my home address. This data object should be labeled with the MyAddress identifier”).

The taint-tracking mechanisms in PDC assume the responsibility for propagating these tags into
the body of an SQL INSERT statement. During the execution of this statement by the database
backend process, the sensitive attribute values (and the associatedDataIDs) propagate through
the various implementation-specific data structures and eventually make their way into the buffer
cache and persistent data structures on disk (e.g., relation heap pages, index pages, the write-ahead
log).

It is important to note that in the above scheme, the propagation of sensitivity identifiers into
persistent DBMS-level data structures occurs without any involvement from the database backend
process and is handled entirely by the PDC hypervisor.

Another approach, which we found useful for testing and debugging, involves extending the
SQL language syntax in a manner that enables database clients to explicitly annotate the body of
an INSERT statement with PDC data identifiers, for example asfollows:

INSERT INTO Patients VALUES (1 {AliceID},
’Alice’ {AliceName},
20 {AliceAge},
’1 April Ave.’ {AliceAddress},
’111-1111’ {AlicePhone}
);

In this scheme, the database backend process is responsiblefor tagging the memory regions
holding sensitive attribute values with the correspondingDataIDs during the query parsing stage.

3.3 Query Evaluation
Recall that the table semantics model of limited disclosureenforcement requires the database to
expose an alternate view of each data table to each〈Purpose,Recipient〉 pair, in which disallowed

6

attribute values are replaced with a NULL value. These semantics can be implemented via a
conceptually straightforward extension to the query execution engine. More concretely, we modify
the scan operators at the leaves of the execution plan tree (e.g.,SequentialHeapScan, IndexScan, ...)
, which are responsible for scanning input relations and returning a stream of raw tuples. Assuming
that these operators expose the conventionaliterator interface, we modify theirGetNext()method
to perform the filtering of prohibited attribute values prior to returning a tuple. For each potentially
sensitive attributeA, the operator determines the virtual address of the memory region holding its
value (typically a pointer into the buffer cache or one of theauxiliary data structures) and issues a
request to PDC to obtain theTaintTagassociated with that memory address. Another request to
PDC resolves theTaintTaginto a DataID and the associated externalization policy specified by
the owner ofA. We evaluate this policy for therecipient(on whose behalf the query was issued)
and the intendedpurpose(as specified by the recipient). If the policy prohibits revealing the value
of A to the specified recipient and for the specified purpose, we mask the contents ofA with a
NULL value prior to returning the tuple.

It is crucial to note that while our design requires augmenting the database engine with the at-
tribute filtering mechanism described above, the responsibility for actually enforcing policy com-
pliance remains with the PDC hypervisor. The scan operatorsquery the PDC platform to determine
which of the attributes in the next tuplemustbe filtered out in order to be permitted to externalize
the query output. In the event that the database process fails to issue the appropriate set of calls to
PDC or fails to correctly replace the prohibited attribute value in its memory buffers with NULL,
the hypervisor would detect tainted data in the output and preclude the guest VM from exposing it.

4 Implementation
We have implemented a proof-of-concept prototype based on the open-source Postgres [1] database
engine and in this section, we briefly describe our modifications and extensions to Postgres. It is
important to note that some of the central elements of the PDCarchitecture are still under active
development and a fully-featured platform capable of running arbitrary guest applications is not
yet available. Our current prototype runs on top of a partialPDC implementation, which includes
the following elements:

• The taint-aware filesystem (s3ext3), which keeps track of taint information in data files on
disk.

• The memory taint management module, which keeps track of taint information in memory
pages using the tree data structure described in Section 3.

An important feature still missing from our partial PDC prototype is the ability to emulate guest
instructions and track the propagation of taints between memory locations and CPU registers.
For the purposes of this project, we devised a workaround solution which aims to simulate this
functionality: we intercept all calls to library functionsthat manipulate the contents of memory
buffers (e.g., routines such asmemset() andmemcpy()), examine their arguments, and manually
update the memory taint data structures to reflect the effects of these memory manipulations. As
a consequence, the evaluation results presented in the following section do not fully reflect the
performance overhead of instruction-level taint trackingthat will be observed when we deploy our
privacy-preserving Postgres prototype on top of the fully-functional PDC platform.

7

Recipient and purpose specification: We extended the frontend/backend Postgres protocol, as
well as the frontend tools, to provide support for purpose specification. Database users are required
to specify the purpose on a per-session basis using a command-line argument, e.g.:

> psql -U accounting --purpose billing

In our current implementation, the notion of arecipientis synonymous with a Postgres user ac-
count, which enables us to leverage existing mechanisms foruser specification and authentication.

Data insertion: We extended the SQL language grammar and the Postgres parserin a manner
that enables users to annotate constant elements in theVALUESclause of anINSERTstatement
with PDCDataIDs. These identifiers are specified in curly braces following the actual values and
the full set of grammar extensions is provided in Appendix A.

Query evaluation: As we described in the previous section, enforcing the tablesemantics model
of limited disclosure requires extending the leaf operators that return raw tuples from input rela-
tions. Prior to returning or operating on the contents of a tuple, the operator calls the PDC runtime
library to determine theTaintTagfor each of the attributes and the associated policy. We evalu-
ate these policies with respect to the session’s recipient and purpose and replace the contents of
prohibited attributes with NULL values.

A sample code fragment, which illustrates the requisite setof changes toslot_de f orm_tuple
(a function invoked during sequential relation scans) is shown in Appendix B. Similar changes
were made toheap_de f orm_tuple, index_getattr, hash_next, and _bt_next to support access via
B-Tree and hash-based indices. Our prototype does not yet provide support for the GiST and GIN
index types.

5 Preliminary Evaluation
In this section, we present the results of our preliminary performance study. The primary objective
of these experiments is to determine the magnitude of the performance overhead associated with
policy enforcement. We measure the query execution time fora modified Postgres backend that
implements PDC-driven policy enforcement, as described inSection 4. There are two obvious
points of comparison:

1. An unmodified Postgres backend, which executes queries and externalizes results without
regard for privacy policies.

2. A modified Postgres backend, which implements the table semantics model of limited dis-
closure using query modification mechanisms, as described in [4].

5.1 Experimental Setup
We measure the performance of our Postgres-based prototypeusing a synthetically generated
dataset, whose parameters are reported in Tables 4 and 5. Thedataset consists of two tables
(DataTable1 andDataTable2) with 10 and 2 attributes, respectively.DataTable1.IntAttr1 serves
as a foreign key intoDataTable2 and we construct a B-Tree index onDataTable2.IntAttr1.

We generate two sets of privacy policies on the contents ofDataTable1 for a hypothetical
〈Purpose,Recipient〉 pair with the parameters shown in Table 6.PolicySet1 corresponds to the sce-
nario of full disclosure, whereby every attribute of every record is revealed. In contrast,PolicySet2

8

Attribute Type Contents
Id INT Unique values in sequential order

IntAttr1 INT Uniform random values chosen from[0−999]
IntAttr2 INT Uniform random values chosen from[0−99]
IntAttr3 INT Uniform random values chosen from[0−9]
StrAttr1 VARCHAR(40) Random 40-byte text string
StrAttr2 VARCHAR(40) Random 40-byte text string
StrAttr3 VARCHAR(40) Random 40-byte text string

BoolAttr1 BOOL Random boolean value, 10%= TRUE
BoolAttr2 BOOL Random boolean value, 50%= TRUE
BoolAttr3 BOOL Random boolean value, 90%= TRUE

Table 4: Components of the benchmark dataset:DataTable1 schema.

Attribute Type Contents
IntAttr1 INT Unique values from[0−999] in sequential order
StrAttr1 VARCHAR(40) Random 40-byte text string

Table 5: Components of the benchmark dataset:DataTable2 schema.

represents a much more restrictive privacy configuration, in which the value of a particular attribute
is revealed for only a fraction of records.

Our initial evaluation efforts focus on measuring the cost of executing the following queries:

Q1: SELECT * FROM DataTable1;

Q2: SELECT DataTable1.Id, DataTable2.StrAttr1
FROM DataTable1, DataTable2
WHERE DataTable1.IntAttr1 = DataTable2.IntAttr1;

Q1 simply returns the full contents ofDataTable1, subject to partial filtering in accordance
with the privacy preferences. Q2 is a somewhat more complex query, which exercises projection
and join facilities. We explore the scalability characteristics by running these queries on three dis-
tinct instances ofDataTable1, which contain 10000, 100000, and 500000 records, while keeping
the contents ofDataTable2 fixed.

Our experiments were run on a desktop-grade machine possessing a quad-core AMD Phenom
1.2Ghz processor, three GB of memory, and one ATA hard drive.Our system ran Linux Fedora
Core 9 with kernel version 2.6.24-14. Unless otherwise stated, all Postgres configuration param-
eters were left at their default values. We measure the queryexecution time using the standard
timeLinux system utility and report the average over 5 iterations. The standard deviation does not
exceed 8% of the reported mean value in any of the experiments. We clear out the Postgres buffer
cache and the Linux page cache after each iteration.

5.2 Experimental Results
Figures 2(a) and 2(b) report the average query response timefor Q1 withPolicySet1 andPolicySet2,
respectively. In these figures,no enforcementdenotes the behavior of the standard Postgres im-
plementation that does not interact with PDC and externalizes query results without accounting
for privacy preferences.Database-level enforcementdenotes the strategy of enforcing disclosure
policies using a database-level mechanism analogous to theone presented in [4]. In this scheme,

9

Option PolicySet1 PolicySet2
Reveal ID? YES YES for 50% of records

Reveal IntAttr1? YES YES for 1% of records
Reveal IntAttr2? YES YES for 5% of records
Reveal IntAttr3? YES YES for 10% of records
Reveal StrAttr1? YES NO
Reveal StrAttr2? YES Yes for 50% of records
Reveal StrAttr3? YES YES

Reveal BoolAttr1? YES Yes for 10% of records
Reveal BoolAttr2? YES Yes for 50% of records
Reveal BoolAttr3? YES Yes for 90% of records

Table 6: Privacy policies on the contents ofDataTable1.

the privacy preferences for the contents ofDataTable1 are explicitly maintained in relational form
(i.e., tablesPolicySet1 andPolicySet2)1. Incoming queries are modified to perform lookups in the
privacy preferences table and selectively filter out prohibited values using the CASE statement.
For instance, Q1 (a simple query that returns all records inDataTable1) would be rewritten for
PolicySet1 as follows in this scheme2:

CREATE VIEW PolicySet1View AS
SELECT
CASE WHEN EXISTS

(SELECT reveal_Id FROM PolicySet1
WHERE PolicySet1.Id = DataTable1.Id
AND PolicySet1.reveal_Id = TRUE)
THEN Id ELSE NULL END AS id ,

CASE WHEN EXISTS
(SELECT reveal_IntAttr1 FROM PolicySet1
WHERE PolicySet1.Id = DataTable1.Id
and PolicySet1.reveal_IntAttr1 = TRUE)
THEN IntAttr1 ELSE NULL END AS IntAttr1 ,

...
FROM DataTable1;

SELECT * FROM PolicySet1View;

Finally,PDC enforcementrepresents the PDC-driven scheme, which relies on a modifiedPost-
gres implementation and the mechanisms presented in Sections 3 and 4.

We observe a significant (and expected) increase in query response time for both privacy en-
forcement schemes, but the modified Postgres implementation that leverages the PDC platform for
policy storage and enforcement offers competitive performance.

Figures 3(a) and 3(b) show the response times for Q2 withPolicySet1 andPolicySet2, respec-
tively. This query joinsDataTable1 with DataTable2 onIntAttr1 and projects a pair of attributes.
Analogously to the previous result, enforcing privacy policies incurs a noticeable performance
penalty and the database-level scheme appears to outperform the PDC-driven design by a signifi-
cant margin. We are currently investigating the likely causes of this performance discrepancy.

1For efficiency, we constructed a B-Tree index on theId field for both policy relations.
2Defining a view simplifies presentation, but is not strictly necessary.

10

 0

 5

 10

 15

 20

 25

 30

 35

10000 100000 500000

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Number of records in DataTable1

No enforcement
Database-level enforcement

PDC enforcement

(a) Query response time withPolicySet1.

 0

 5

 10

 15

 20

 25

 30

 35

10000 100000 500000

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Number of records in DataTable1

No enforcement
Database-level enforcement

PDC enforcement

(b) Query response time withPolicySet2.

Figure 2: Performance and scalability results for Q1 - a simple query that returns the full contents
of DataTable1.

 0

 2

 4

 6

 8

 10

 12

 14

 16

10000 100000 500000

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Number of records in DataTable1

No enforcement
Database-level enforcement

PDC enforcement

(a) Query response time withPolicySet1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

10000 100000 500000

E
la

ps
ed

 ti
m

e
(s

ec
on

ds
)

Number of records in DataTable1

No enforcement
Database-level enforcement

PDC enforcement

(b) Query response time withPolicySet2.

Figure 3: Performance and scalability results for Q2. This query joins DataTable1 and
DataTable2 onIntAttr1 and projects two of the resulting attributes.

6 Summary and Future Work
Information privacy is an increasingly growing concern fororganizations that collect and main-
tain large amounts of personal data. In this report, we presented an initial design for a privacy-
preserving relational database that provides the table semantics model of limited disclosure. Our
approach is influenced to a significant extent by earlier work[2,4], but relies on the PDC platform
for the storage and enforcement of privacy policies. We are currently implementing the remain-
ing components of PDC and making improvements to our Postgres-based prototype. Future work
will include conducting an extensive performance evaluation on top of the fully-functional PDC
platform.

References
[1] Postgres.http://www.postgresql.org.
[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. InVLDB, 2002.

11

[3] S. Katti, A. Ermolinskiy, M. Casado, S. Shenker, and H. Balakrishnan. S3: Securing sensitive stuff. InUSENIX
OSDI Work-in-Progress (WiP) report, 2008.

[4] K. Lefevre, R. Agrawal, V. Ercegovac, R. Ramakrishnan, Y. Xu, and D. DeWitt. Limiting disclosure in hippocratic
databases. InVLDB, 2004.

[5] M. Meyers. UC Berkeley computers hacked, 160,000 at risk. http://news.cnet.com/8301-1009_
3-10236793-83.html", 2009.

12

APPENDIX

A SQL Grammar Extensions
Below, we list our extensions to the SQL language grammar (defined insrc/backend/parser/gram.y).
The apparent complexity is due to the fact that the annotatedversion of the VALUES clause is
meaningfulonly in the context of an INSERT statement and should not be allowed to appear in
other cases permitted by the original grammar (e.g., insideSelectStmt).

insert_rest:
tainted_values_clause:

{
$$ = makeNode(InsertStmt);
$$->cols = NIL;
$$->selectStmt = $1;

}

| ’(’ insert_column_list ’)’ tainted_values_clause
{

$$ = makeNode(InsertStmt);
$$->cols = $2;
$$->selectStmt = $4;

}
| SelectStmtNoValues

{
$$ = makeNode(InsertStmt);
$$->cols = NIL;
$$->selectStmt = $1;

}
| ’(’ insert_column_list ’)’ SelectStmtNoValues

{
$$ = makeNode(InsertStmt);
$$->cols = $2;
$$->selectStmt = $4;

}
| DEFAULT VALUES

{
$$ = makeNode(InsertStmt);
$$->cols = NIL;
$$->selectStmt = NULL;

}
;

tainted_values_clause:
VALUES tainted_ctext_row

{
SelectStmt *n = makeNode(SelectStmt);
n->valuesLists = list_make1($2);
$$ = (Node *) n;

}
| tainted_values_clause ’,’ tainted_ctext_row

{
SelectStmt *n = (SelectStmt *) $1;

13

n->valuesLists = lappend(n->valuesLists, $3);
$$ = (Node *) n;

}
;

tainted_ctext_row: ’(’ tainted_ctext_expr_list ’)’ { $$ = $2; }
;

tainted_ctext_expr_list:
tainted_ctext_expr { $$ = list_make1($1); }
| tainted_ctext_expr_list ’,’ tainted_ctext_expr { $$ = lappend($1, $3); }
;

taint_label: ’{’ Iconst ’}’
{

TaintLabel *l = makeNode(TaintLabel);
l->label = (Node *)makeInteger($2);
$$ = (Node *)l;

}
;

tainted_ctext_expr:
a_expr { $$ = (Node *) $1; }
| a_expr taint_label

{
Tainted_A_Expr *e = makeNode(Tainted_A_Expr);
e->a_expr = $1;
e->taint = $2;
$$ = (Node *)e;

}
| DEFAULT { $$ = (Node *) makeNode(SetToDefault); }
;

SelectStmtNoValues: select_no_values_no_parens %prec UMINUS
| select_no_values_with_parens %prec UMINUS
;

select_no_values_with_parens:
’(’ select_no_values_no_parens ’)’ { $$ = $2; }
| ’(’ select_no_values_with_parens ’)’{ $$ = $2; }
;

select_no_values_no_parens:
simple_select_no_values { $$ = $1; }
| select_clause_no_values sort_clause

{
insertSelectOptions((SelectStmt *) $1, $2, NIL,

NULL, NULL);
$$ = $1;

}
| select_clause_no_values opt_sort_clause for_locking_clause opt_select_limit

{
insertSelectOptions((SelectStmt *) $1, $2, $3,

list_nth($4, 0), list_nth($4, 1));

14

$$ = $1;
}

| select_clause_no_values opt_sort_clause select_limit opt_for_locking_clause
{

insertSelectOptions((SelectStmt *) $1, $2, $4,
list_nth($3, 0), list_nth($3, 1));

$$ = $1;
}

;

select_clause_no_values:
simple_select_no_values { $$ = $1; }
| select_no_values_with_parens { $$ = $1; }
;

simple_select_no_values:
SELECT opt_distinct target_list
into_clause from_clause where_clause
group_clause having_clause

{
SelectStmt *n = makeNode(SelectStmt);
n->distinctClause = $2;
n->targetList = $3;
n->intoClause = $4;
n->fromClause = $5;
n->whereClause = $6;
n->groupClause = $7;
n->havingClause = $8;
$$ = (Node *)n;

}
| select_clause_no_values UNION opt_all select_clause

{
$$ = makeSetOp(SETOP_UNION, $3, $1, $4);

}
| select_clause_no_values INTERSECT opt_all select_clause

{
$$ = makeSetOp(SETOP_INTERSECT, $3, $1, $4);

}
| select_clause_no_values EXCEPT opt_all select_clause

{
$$ = makeSetOp(SETOP_EXCEPT, $3, $1, $4);

}
;

B Masking Prohibited Values
/* slot_deform_tuple

* Given a TupleTableSlot, extract data from the slot’s physical tuple

* into its Datum/isnull arrays. */
static void slot_deform_tuple(TupleTableSlot *slot, int natts) {

HeapTuple tuple = slot->tts_tuple;
Datum *values = slot->tts_values;
bool *isnull = slot->tts_isnull;
TupleDesc tupleDesc = slot->tts_tupleDescriptor;

15

Form_pg_attribute *att = tupleDesc->attrs;
HeapTupleHeader tup = tuple->t_data;
s3_tainttag_t attr_tainttag;
s3_policy_t attr_policy;
bool allow;
...

tp = (char *) tup + tup->t_hoff;

for (; attnum < natts; attnum++) {
Form_pg_attribute thisatt = att[attnum];
...
s3_get_vaddr_tainttag(tp + off, &attr_tainttag);
s3_get_tainttag_policy(&attr_tainttag, &attr_policy);

allow = s3_evaluate_policy(&attr_policy,
GetSessionPurpose(),
GetSessionRecipient(),
GetSessionChannel());

if (allow) {
values[attnum] = fetchatt(thisatt, tp + off);
isnull[attnum] = false;

} else {
values[attnum] = (Datum)0;
isnull[attnum] = true;
slow = true;

}

off = att_addlength_pointer(off, thisatt->attlen, tp + off);
...

}
...

}

16

